Abstract

BUKSAS, MICHAEL WILLIAM. Modeling, Analysis and Implementation of Forward
and Inverse Problems in One Dimensional Electromagnetic Scattering with Differen-
tial and Hysteretic Polarization Models (Under the direction of H. Thomas Banks)

We begin with the derivation from Maxwell’s Equations of equations describing the
interaction of planar electromagnetic waves with dielectric materials. This derivation
is completed by the addition of constitutive laws which govern the polarization of
the material. We consider two types of constitutive laws expressed as differential
equations or as the convolution of the history of the electric field with a hysteresis
kernel. These laws are expressed in terms of parameters whose values describe various
materials. Our interest here is in contrasting these two formulations for the purposes
of simulation and recovery of the values of the parameters. The Debye and Lorentz
models are the differential constitutive models of first and second order and are the
ones we consider here.

We develop numerical schemes for each formulation of the problem which use
Galerkin finite elements to discretize the space variable, creating a differential sys-
tem of equations. For the hysteresis formulation, another Galerkin approximation
is used for the history of the electric field and the approximation of the hysteresis
integral. Using these schemes, we simulate brief pulses of high-frequency electro-
magnetic waves impinging upon a homogeneous slab of material. These simulations
demonstrate the same precursor formation found in frequency domain analyses of
these problems. We also show that the numerical approximation of the hysteresis
formulation accurately reproduces the results of the differential Debye model when
the correct hysteresis function is used. This same method is shown to be impractical
for the highly oscillatory kernel function for the Lorentz model.

The simulations are used in the inverse problem, where we attempt to recover

the values of the parameters from measurements of the electric field reflected off the



surface of the slab. We estimate the values of the model parameters by minimizing
the difference between the results of the simulation and a set of data. The data is
generated by adding noise of relative magnitude to a result from the same simula-
tion. By comparing the results of the optimization to the parameter values used to
generate the data, we measure the effect of the noise. Our results indicate that with
certain exceptions, the parameter values can be recovered in the presence of noise of
magnitude up to 5% of the magnitude of the signal. The exceptions arise from the
sensitivity of the simulation to the various parameters but are compatible with an
accurate representation of the dynamics of the polarization. The sensitivity of the
result of the Debye model simulation on various parameter values is also shown to de-
pend on the frequency of the interrogating signal. Furthermore, for experiments using
the Debye model, a hybrid technique is presented for estimating both the physical
parameters and the thickness of the slab. This is done by expanding the collection of
data to include part of the interrogating pulse which travels completely through the
material and matching the return time of this pulse with the return time observed in
the data.

The software written to perform the numerical computations described above is
made part of a project to develop a re-usable library of code for scientific computing.
We chose the object-oriented language C++ for this purpose with the intention of
using specific features to facilitate the development of the library. We document here
the features of interest and the resulting library of code. We also discuss some design
patterns, supported by the object oriented paradigm which were used in the design

of the code.
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Chapter 1

Background

A survey of the mathematical literature reveals considerable interest in the iden-
tification of material parameters describing electromagnetic phenomenon. For our
purposes, we categorize the materials and the models employed to describe them
as either dispersive or non-dispersive, where dispersive materials are those in which
electromagnetic waves of different frequencies have different phase velocities. When
modeled in the frequency domain, this is manifested as parameters which depend
explicitly on frequency. In time domain models, the same phenomenon can be cap-
tured with constitutive laws in which the electric and/or the magnetic polarizations
are expressed in terms of the convolution of the history of the electric and magnetic
fields. The equivalence of the two in the case of electric polarization dispersion is
shown by Jackson [Jac, pp.306]

Forward problems in this field are dominated by one dimensional scattering prob-
lems where planar electromagnetic waves impinge on dielectric slabs. In a series of four
papers [KK, KK2, KK3, KK4] Kristenson and Krueger examine this problem with
a wave splitting technique and the derivation of scattering operators which satisfy
imbedding equations. The reconstruction of the functions representing the physical
parameters proceeds from the imbedding equations and a scheme is presented which is
shown to be robust in the presence of noise. The physical model covers stratified me-

dia, meaning that the material is inhomogeneous in the direction of the propagation
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of the waves.

A similar approach is applied to a slightly different model by Weston [Wes| who
considers a dissipative wave equation equivalent to the problem of planar waves in
stratified media. These results are extended by Krueger [Kru, Kru2, Kru3] to cover
media in multiple slabs, thus containing multiple discontunities in the material pa-
rameters. Corones and Sun [CS| use the same method of wave splitting and invariant
imbedding to reconstruct coefficients in a one dimensional wave equation with a source
term. In another paper, He and Strom [HS] also consider the scattering problem for
stratified materials illuminated with waves generated by a magnetic dipole.

Some progress has also been made into more general geometries, largely due to
the increasing sophistication of wave splitting techniques in higher dimensions. In a
paper by Weston [Wes2| a decomposition of solutions of the dissipative wave equation
in R? is given and integro-differential equations are derived for the reflection operator.
The reconstruction of the velocity and dissipation coefficients from the kernel of this
operator are demonstrated.

Inverse problems involving dissipative materials follow a similar pattern of devel-
opment in moving from one dimensional scattering with planar waves to more general
settings. Beezley and Krueger [BK] began investigation into these problems by em-
ploying a method similar to the non-dispersive case in one dimension. Imbedding
equations are derived for the reflection operator relating the incident and scattered
parts of the split wave solution. The dielectric response kernel is reconstructed from
the imbedding equations derived for homogeneous semi-infinite and finite slabs. The
reconstruction is also carried out numerically in the presence of noise applied to the
reflection kernel.

Well-posedness results for these problems are demonstrated by Bui [Bui| in which
a time domain model involving both conductivity and electric polarization are con-
sidered. Theorems governing the existence, uniqueness and continuous dependence
of solutions for both the forward and inverse problems were given.

In a different setting Sun [Sun| identifies the source current embedded inside a
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dispersive material using a time-domain approach. In a paper by Lerche [Ler| a
different integral equation is derived relating the dielectric response function to an
operator representing the frequency domain absorption characteristics of a material.
Wolfersdorf [Wol] extends these results to finite and semi-infinite slabs and derives
exact solutions to the integral equations for the dielectric response.

A different geometry is considered by Kreider [Kri] who poses the problem of
electromagnetic scattering in a stratified cylinder. The problem is also made one
dimensional through angular symmetry of the cylinder and the fields. Unlike other
problems with dispersive media, the material is inhomogeneous in space, although
the dielectric parameter is restricted to functions which are separable between the
variables of space and frequency: €(z,w) = €;(z)ex(w).

Another problem which allows for spatially inhomogeneous dispersive materials is
considered in [HFL]. Here an optimization approach is applied to match simulations
to real and synthetic data. The constitutive equations permit convolution terms in
both the electric polarization and the conductivity. The limitations of simultane-
ous reconstruction of the spatial and time-varying parts of the kernel functions is
considered when both transmission and reflection data are available.

Another inhomogeneous two dimensional problem is considered by Colton and
Monk [CM] who use a frequency domain approach in modeling the interaction of
electromagnetic waves with human tissue for the detection of leukemia in bone mar-
row. The geometry of the medium is presumed known and the two dimensional
domain is further partitioned into sub-domains of known geometry. The only un-
knowns are the constitutive parameters describing the bone marrow, and these are
considered functions of space as well. The reconstruction of the bone marrow param-
eters is demonstrated and is shown to be robust in the presence of relative noise with
magnitude as high as 1%.

Another problem motivated by an application is given in [RGKM] where models
for the penetration of radar waves in soil are given. The ground is represented by

a stratified semi-infinite slab and electromagnetic signals are generated by a circular
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loop of current. Well-posedness results are given for the inverse problem.

In summary, we note the differences between the physical models and the solution
methods employed in these papers and our results which follow. A number of these
papers differ from ours in that they deal with non-dispersive materials. This elimi-
nates the need to reconstruct parameters which are functions of frequency or history
kernels which are functions of time. These papers do consider materials which are
inhomogeneous in the space variable, however, and while the model formulation is
in the time domain, the forward and inverse problems are solved by wave-splitting
and invariant imbedding techniques. A number of these papers consider physical
problems similar to ours, in which planar electromagnetic waves impinge normally on
slabs of material but progress has also been made into three dimensional settings for
non-dispersive problems.

Among the papers which employ dispersive models, many differ from ours by us-
ing a frequency domain approach which is best suited for physical problems involving
time-harmonic solutions. Among those treatments which use time-domain models,
most use the wave splitting approach popular with the non-dispersive materials to
formulate the forward and inverse problems. Only one paper [HFL| used an optimiza-
tion approach and formulated an inverse problem using the time domain data itself.
While this paper and others considered inhomogeneous materials, the geometry of
the material slab is considered to be known. This differs from our problem in that
we do not assume the thickness of the material slab is known a priori and attempt
to identify this dimension along with the parameters describing the electromagnetic

behavior.



Chapter 2

Introduction and Problem Formulation

2.1 Motivation and the General Inverse Problem

The ability to interrogate the interior of tissues and other materials has applications
to medical imaging and the early detection of anomalies. For example, the results we
will present here suggest that the use of a metal tip catheter, threaded into a target
organ such as the colon or arterial system, will provide the necessary localization of
interrogating probes to allow practical diagnostics involving geometry. Furthermore,
it is hoped that the in vivo dielectric properties of tissues and organs can be correlated
with metabolic functioning. Hence the accurate determination of these dielectric
properties can be employed in the evaluation of functional integrity of tissues and
organs in subjects.

Other suggested applications for the technology developed here are mine, ordi-
nance and camouflage detection, non-destructive damage detection in aircraft, and
subsurface and atmospheric environmental monitoring.

The goals of electromagnetic interrogation as presented here are twofold: the de-
termination of both the geometry and dielectric properties of the materials under
investigation. We consider the generalized problem depicted schematically in Fig-
ure 2.1. The domain ) of the object under consideration has both a known and

unknown portion of the boundary. The unknown portion I'(g) is presumed to be
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Figure 2.1: Schematic Diagram of Geometry

backed by a supraconductive material with an effectively infinite conductivity. On
this boundary with outer normal 7, we thus have Exna=0and B-A=0 [Bal, p20].
Note that the unknown nature of the boundary is represented by its dependence on
a set of parameters ¢ which are to be determined to establish the geometry of the
object.

The electric and magnetic fields inside € and exterior to €2 (this region will be
denoted €)y) are governed by the macroscopic Maxwell’s equations [Jac, Bal, St]. To
describe the electromagnetic behavior of complex materials, we express Maxwell’s
equations in a general form which includes terms for electric and magnetic polariza-

tion. We have
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. OB

EFE = ——
VX ot B} L

. ('35 . D = e¢E+ P
VxH = —+J - . .
v- — — — —

. P J = et Js
V-B = 0.

The vector-valued functions E and H represent the strengths of the electric and
magnetic fields respectively, while D and B are the electric and magnetic flux densities
respectively. The two current contributions are denoted by JZ, the conduction current
density, and js, a source current density. The electric and magnetic polarizations are
represented by Pand M , respectively . The scalar quantity p represents the density
of electric charges unaccounted for in the electric polarization.

The three quantities M , Pand J, embody the behavior of the material in response
to the electromagnetic fields. Additional material-dependent equations (constitutive
laws) are required to determine their dependence on the components of the fields E
and H. These are also necessary to make the system of equations completely deter-
mined. There are twenty-two unknowns in the equations above, three components of
the seven vector fields E, H , l_j, B , ]3, M , J_; and the scalar quantity p. The equations
above provide fourteen total equations and the three constitutive laws for the quanti-
ties M , P and J, add nine more. The dependence of these equations on the material is
reflected both in the choice of a mathematical model and in the parameters (possibly
functions) appearing in the model. Estimation of these parameters are the goals in
the inverse problems we formulate below.

The region 2y external to the medium is treated as empty space and is devoid of
conductivity or polarization effects, hence M = O,ﬁ = 0 and fc = 0 in Qp, and all
of the necessary parameters for the determination of the fields are assumed known in
this domain. The source current density term J, will also be non-zero only at points

in €29. The presence of an alternating current source will generate the electromagnetic
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waves in this domain which illuminate the target medium 2.

We make certain assumptions about the material which are reflected in the con-
stitutive relations in the domain 2. For the biological media of interest to us, we
can neglect magnetic effects; we also assume that Ohm’s law governs the electric
conductivity. Hence for 7 € Q
0
) = oE(%).

~ =
P
&

[

~
8y

The parameter ¢ is among those which need to be identified to determine the dielec-
tric properties of the media. We note that for biomedical applications, the assumption
of Ohm’s law may not be appropriate (e.g., see [APM]) and one might need to also
include a hysteretic dependency (in terms of a conductivity susceptibility kernel simi-
lar to the polarization kernel in (2.1) below). While such a more general conductivity
relationship would add to the computational requirements, the ideas and techniques
presented in this paper could readily be used to treat such an assumption. For sim-
plicity we restrict ourselves to Ohmic conductivity in our discussion here.

To describe the behavior of the media’s electric polarization, we employ a general
integral equation model in which the polarization explicitly depends on the past
history of the electric field. The resulting constitutive law can be given in terms of a

polarization or displacement susceptibility kernel g by
— t —
B(t,7) = / g(t — s, 7)E(s, T)ds. (2.1)
0

We note that this model presupposes that P(0,Z) = 0. In the electromagnetic liter-
ature, e.g., see [Jac, BK, APM], the relationship is often expressed as

B(t,7) = /0 TG DE — €, 5)de

or as

- t .
B(t,7) = /0 G, D) E(t — ¢, 7)de



Chapter 2. Introduction and Problem Formulation 9

in the case of E (t,Z) = 0 for t < 0 which is of interest here. These are both related to
our formulation by the simple change of variables: s =t — &. We prefer our form of

the equation since then any time derivatives are borne by the kernel function g and
2 —

P =
—(t,Z) = P(t, &), which will

not the variable E. Specifically, under (2.1) the term BT

appear in subsequent equations, is given by
o t . >, -
Plt.) = [ §(t - 5, 9)E(s,9)ds + 90, E(t.7) + §(0,9)Ft.7)  (22)
0

while the more traditional representation leads to

—

Bt ) — / "Gl DBt — ¢, 8)ds + Gt D) E(0,7) + G HEO0, 7). (2.3)

The presence of E under the integral term in equation (2.3) complicates the analysis
and solution of the Maxwell’s equations considerably. Although the first formula-
tion leads to the additional terms g(0, f)E(t,f) and g(O,f)ﬁ(t, Z), as we shall see
below, these terms cause no increase in the complexity of the problem analysis or
computation.

We note that an attempt to include a component of the polarization which depends
on the instantaneous value of the electric field would add a delta function in the
time variable to the kernel function g(s,Z). This introduces some mathematical
complexities which, for simplicity, we avoid by treating instantaneous polarization
when it arises in a different, but completely equivalent, manner (i.e., by modifying

the first term in the displacement /electric field relationship). The equation relating

the electric flux density to the electric field can be readily replaced by
5 = ereoE_” + ]3

where €, > 1 is defined as the relative permittivity. This formulation, which is
standard in the electromagnetic literature, introduces another parameter €, which
can be treated as a spatially dependent parameter to allow for instantaneous effects

on displacement in €2 due to the electric field originating in 2.
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The constitutive law in equation (2.1) is also sufficiently general to include models
based on differential equations and systems of differential equations, or delay differ-
ential equations, (see [BJ]) whose solutions can be expressed through fundamental so-
lutions (in general variation-of-parameters representations). For example, the choice
of kernel function g(t) = ¢ ¥ (€, — €5, )/7 in € corresponds to the differential equation

of the Debye model in 2 given by

TP+ P = ees—ex)E (2.4)
eweoﬁ + ]3

ol
|

The presence of instantaneous polarization is accounted for in this case by the co-
efficient €., in the electric flux equation. That is, €, = €5 in 2,6, = 1 in . The
remainder of the electric polarization is seen to be a decaying exponential, driven by
the electric field, less the part included in the instantaneous polarization. This model
was first proposed by Debye in [Deb, VH] to model the behavior of materials whose
molecules have permanent dipole moments. The magnitude of the polarization term
P represents the degree of alignment of these individual moments.

We will also consider the Lorentz model of electric polarization which, in differ-

ential form, is represented with the second order equation:

P+ w2P = ¢qw?E (2.5)

The so-called plasma frequency is defined to be w, = wyv/€; — €x. A simple variation

of constants solution yields the correct kernel function

2

€ow
g(t) = Qe_%tsin(yot)
W

1

where 1y = \/wi — 7=
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2.2 Estimation Methodology

Adapting a rather standard approach, we propose to identify the unknown parameters
in a given model of polarization and a geometric representation by attempting to
minimize the difference between simulations and observations of time-domain data.
The data are measurements of the electric field at points in the exterior domain €2y at
discrete times. The simulation is a computed solution to Maxwell’s Equations with
the constitutive laws for polarization, using candidate values of the geometric and
material parameters. The criterion for optimization is the minimization of a least-
squares measurement of the difference between the simulation and the observed data

given by
N

J(q) = 2; |E(t:, % q) — B
i=
The E; are measurements of the electric field taken at specific locations and times.
The E(ti,fi;j) are solutions evaluated at the same locations and times from the
simulation using the full set of parameter values ¢.

We note two nontrivial difficulties with this approach and propose solutions, the
efficiency of which will be demonstrated in the particular implementation discussed
in this paper.

The unknown location of part of the boundary creates computational challenges.
During the course of an iterative optimization procedure, simulations will be repeated
many times for different locations of the unknown part of the boundary of €2. That
is, iterative based methods generally will involve changing domains and hence chang-
ing discretization grids in the usual finite element or finite difference approximation
schemes. Any associated computational scheme (with domain changing with each
iterative step) will be prohibitive in effort and time.

We address this difficulty by employing the “method of mappings”, [BKo, Pi,
BKoW] and transforming the problem on QJ{)y with unknown geometry to one
with known geometry (a reference domain Q) at the expense of introducing additional

unknowns into the equations that must be solved on this new domain. Generally, we
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cannot expect these mappings to be C?, or even C', which precludes finding classical
solutions of the transformed system. For this and other reasons discussed below, we
consider a weak formulation of the problem. The effect of the mapping is seen in
additional coefficients appearing in the equations. The values of these coefficients
must be interpreted through the inverse map to determine the geometric parameters.

Another difficulty arises from the oscillatory nature of the time domain data.
Varying some parameters in the model has the effect of changing the time at which
reflected signals are detected by varying the distance the propagated waves travel (to
and from the unknown boundary I'(¢)) and their speed of propagation. This causes
the simulated data to move in and out of phase with observations as these parameters
are changed, producing in the cost function J an oscillatory character with respect
to these parameters. Thus, local minima of J can (and do) arise at values for which
the simulation moves partially back into phase with the data (this is illustrated in
Section 4).

We choose to avoid the resulting difficult optimization problem by employing
a multi-step approach which separates the identification of geometric and physical
parameters. (Other approaches are possible, e.g., use of an optimization algorithm
that obtains global minima even in the presence of multiple local minima.) The data
set is truncated in time to a period which contains only partial reflections from initial
penetrations of the interrogating signal on the surface of the material, eliminating
the dependence on geometry. This generates an estimate of the dielectric parameters
which is used in a second step which attempts to recover the geometry. To avoid
the oscillatory nature of the objective function, a different optimization criterion is
used in the second step. This criterion compares the secondary return times (i.e.,
return times after the pulse has reflected back from the unknown supraconductive-
backed part of the boundary) of pulsed signals through mediums of varying geometry
with the observed data secondary return times. A global optimization for improved
estimates of all parameters is then attempted in a third step, using the estimates of

the geometry and the prior estimate of the dielectric parameters as initial estimates.
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2.3 Reduction to a Specific Problem

The choice of an interrogating input signal (in our case, a windowed microwave pulse
from an exterior antenna in €)y) has profound implications on both theoretical and
computational aspects of the inverse problem for estimation of dielectric and geo-
metric parameters. A very popular (and readily implemented) choice consists of a
polarized planar wave. This produces a signal with the E and H fields possessing
nontrivial components in only one dimension in €2y. If the interrogated medium 2
has some homogeneity (in planes parallel to that of the interrogating planar wave), a
similar reduction of the E and H fields occurs in the body 2.

To discuss our inverse problem ideas, we consider in this paper the problem of
interrogating an infinite slab of homogeneous (in the directions orthogonal to the di-
rection of propagation of the plane wave) material by a polarized plane wave windowed
microwave pulse. Specifically, as depicted in Figure 2.2, the interrogating signal is
assumed to be a planar electro-magnetic wave normally incident on an infinite slab
of material contained in the interval [z, z5] with faces parallel to the zy plane. The
electric field is polarized with oscillations in the xz plane only.

Under these assumptions, it is easy to argue that the electric field is parallel to the
i axis at all points in €y (the region external to the slab) and that the magnetic field
is always parallel to 7. Furthermore, these fields are homogeneous in intensity in the
z and y directions. Thus E(t, Z) = 1E(t, z), H(t, &) = jH(t, z) as shown in Figure 2.2.
The electric flux density D and polarization P inherit this uniform directional prop-
erty from E and hence will be denoted hereafter by their scalar magnitudes D and
P in the 7 direction. Since we have assumed that the material properties are homo-
geneous in the x and y variables, the propagating waves in ) are also reduced to one
nontrivial component. Thus the problem’s dependence on z and y disappears since
the resulting fields are necessarily homogeneous in these variables. This makes it pos-

sible to represent the fields in Q and )y with the scalar functions E(t, z) and H(t, z).

Under these assumptions, the differential operation V x A reduces to —3%y 4 §94
0z J Oz
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E(t,2

aEr

H(t2)

Figure 2.2: Geometry of Physical Problem

and the Maxwell’s Equations from Section 2.1 become

OF OH
92 _'MOE (2-6)
OH oD

—a - E+O’E+Js. (27)

We eliminate the magnetic field from the equations by taking the space derivative
of equation (2.6), the time derivative of equation (2.7) and using the equation for

electric flux density D = ¢E 4+ P where € = ¢y(1 + (¢, — 1)) to obtain

po€E + o P + poo B — B = —poJ,. (2.8)
Here and throughout, 74 will denote the indicator function for a set A and’ = 8%, =
o
& .

This is the differential equation of concern for both our simulations and inverse
problem calculations. We also define the domain of the computation (after the method

of mappings has been applied) to be the interval Q= [0, 1] which contains €. An
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absorbing boundary condition is placed at the z = 0 boundary of the interval to

prevent the reflection of waves. This can be expressed by
=0 (2.9)

where ¢? = 1/eguo.

For our formulation we assume that the location of the boundary at z = 2z; is
known, while the location of the original back boundary at z = zy (equivalently,
the depth of the slab) is unknown, i.e., I'(g) = {Z € R3}|z = z}. Thus we have a
supraconductive backing on the slab at z = 2z3. The boundary conditions on this
supra-conductive reflector can now be determined explicitly, again assuming that the
method of maps had been applied and therefore the back boundary of the material
is now found at z = 1, the edge of the computational domain. (The precise map
will be discussed momentarily below.) The vector normal to the surface is n = k
and the condition B - 7 is satisfied automatically since B = Bj. The condition
E x f = 0 becomes [Eyi — Eyjlr = 0 and hence the condition E, = E, = 0. Since
E = (E,,0,0) = iE this the equivalent to the condition that E(t,1)=0.

Substituting the expression for P derived in equation (2.2) we obtain the strong

form of the equation

& B(t,2) + %w)(a(z) +9(0,2))E(t, 2)

1 t 1
2 106(0,2)E(t, 2) + / In—i(t — s,2)E(s, 2)ds (2.10)
€0 0 €p
1
—PE"(t,2) = ——Ji(t, 2),
€o

where indicator functions I have been added to explicitly enforce the restriction of
polarization and conductivity to the interior of the transformed medium Q = [z, 1]
and €. = €/eg = 1+ (¢, — 1)Ig > 1 throughout 4 2.

Alternatively, we can apply integration by parts to the integral term and arrive

at a different form of the equation.

&E(t, )+ %IQ(Z)(O'(Z) +9(0,2))E(t, 2)



Chapter 2. Introduction and Problem Formulation 16

t

L ot — s, 2)E(s, 2)ds (2.11)

1
+—Ing(t, 2)E(0, 2) +
€0 0 €p

1.
—CPE"(t,2) = ——J(t, 2).
€o

This form of the equation has the advantage of requiring less continuity in the hystere-
sis function ¢(s, z). Furthermore, one of its terms disappears when E(0, z) = 0, which
is the case of interest in the simulations. We shall use the weak form of this equation
in our computational investigations in Section 4.5. Analysis of the well posedness of
equation (2.10) in weak form is carried out in [BB].

Due to the forms of the interrogating inputs, the dielectrically discontinuous
medium interfaces, and the possible lack of smoothness in mapping the original do-
main Qo UQ = [0, 2] to the reference domain Q = [0,1], one should not expect
classical solutions to Maxwell’s equations in strong form. For both theoretical and
computational purposes, it is therefore desirable to write the system equations in
weak or variational form. Using the spaces H = L5(0,1) and V = H{(0,1) = {¢ €
H'(0,1)|¢(1) = 0}, we can express equation (2.11) in the more general weak form as

t

EE.0)+ (1B, 6) + (BB ) + ([ alt = s5,)B(s)ds.¢)
+i(t,2) E(0, 2) + (E', ¢') + cEy(t,0)¢(0) = (T (t,-), ¢) (2.12)

with initial conditions

E(0,2) =®(2) E(0,z) =T(2)
The coefficients of our particular problem in (2.12) are given by

a(t,z) = %Ig(z)g(t, ), B(z) =0,
1(2) = Sla(2)(0(2) +9(0,2), Kt 2) = =L Ta(2)i(t, 2),
J(t,z) = —%j(t,z)

and (-,-) is the L? inner product (or equivalently, any appropriately chosen topologi-
cally equivalent inner product - the relevance of this remark will be clearer after our

discussion below of the method of maps for this example). We retain the coefficient
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[ in the analysis to address the more general problem posed by non-zero functions
in this coefficient. The functions (3,7 and k are assumed to be in L* but may lack
any additional regularity. For the purpose of demonstrating uniqueness of solutions
to equation 2.12 we will require o € H*, that is, both a € L*® and & € L.

The source current is under our control, so we can and do choose its form precisely.

For example, we may use
Ju(t, z) = 6(2) sin(wt) Lo, (t). (2.13)

Here, w is a specified angular frequency of the input signal (and the carrier frequency
of the resulting planar wave) and 6(z) is the Dirac distribution which has infinite
mass at z = 0. The signal is truncated at a finite time Z; by the indicator function
To,;)(t). We avoid the complications arising from a discontinuous (in t) input signal
by requiring that the sinusoid be zero at t;. Hence wty = nm for some positive integer
n. This is equivalent to requiring that the end of the signal occur after a integral
number of half-periods. We note that this windowed signal can be equivalently cho-
sen with additional smoothness in ¢ by replacing the indicator (o, with a slightly
smoother (continuous or even differentiable) truncating function.

This windowed pulse input signal is most helpful in identifying the physical and
geometric parameters separately. Since it has a finite duration, the wave’s reflection
off the surface of the media and its subsequent reflection off the back surface will not
necessarily overlap for a sufficiently short pulse. This makes it possible to split the
resulting data and perform the two estimation steps described above separately.

We turn to the details of the method of maps for this example. The application of
the method of mappings is quite straightforward in this particular case. The value of
z1 is presumed known, while the surface at z, is inaccessible and therefore its location
(i.e., the value of z) is not known. We use a piece-wise linear mapping which leaves
the interval (0, 2;) invariant and maps (21, 22) to (21,1), thus mapping the original

domain Qo U = [0, 2] to the reference domain Q = [0,1]. The new coordinate
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variable Z in Q = [0, 1] is defined by

z O<z< 2z

1—
nt(z—z) 2 a1<z<2n

where ( = % and

f'(z) =14 (¢ = Dla(2).
The parameter ( appearing the equations can be identified in lieu of the depth z5 — 2;
which of course can be recovered from it. Wherever spatial derivatives appear in the
equations, we must replace these with the derivatives with respect to the new variable

Z using the chain rule
o 90 o0
0z 020% 0z’

Hence dz = f’(z)dz and the expressions for the inner products in the weak form are

modified accordingly to

@) = [ o)

N 7
= /U <z5(z~)w(z~) 73
_ e,
_ /0 . é(i)lﬁ(%)d%—i—% G(2)(2)d? (2.14)

21

W) = [T e

= [+ - DIF e
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= /UZl é’(i)%zf’(?)df+é/zj ¢ (2)0/(2)dz. (2.15)

Here the functions ¢ and v have been expressed in terms of the new variables ¢(z) =
#(2),1(z) = (). For convenience, we will drop the over tilde notation in subsequent
discussion.

Returning to equation (2.12) again, we see that in mapping the original Maxwell
system on the domain QoS to the reference domain Q = [0,1], the (-,-) in (2.12)
should be interpreted in the sense (2.14),(2.15) above. This will be done in all com-
putational results presented in Section 4. Note that for the theoretical discussions of
Section 3 we can without loss of generality use the usual L? inner products.

This one dimensional problem also permits a simple interpretation of the return
time when identifying the geometry. Before the method of maps is applied, the
unknown geometric quantity is the depth, 25—z, of the medium. After the mapping is
applied, the actual depth of the medium is fixed, but the effects of changing geometry
are reflected in the new coefficients, (actually the weighting parameter ¢ in the inner
products) which appears in the equation. Since there is only one path for the pulse
to pass through the medium and be reflected back, the first return of the transmitted
signal is a singular event and simple to identify.

To further clarify the identification of the return time, we restrict our attention to
materials which are sufficiently thick and pulses which are sufficiently short that the
first reflection of the pulse off the surface at z; is completed before the transmitted
signal has returned from the back surface. Using ¢, the speed of light in a vacuum,
as an upper limit on the speed of propagation in the material, this condition requires

that trc < 2(2 — 21).
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Wellposedness

In this section we consider wellposedness questions for the variational form (2.12) of
Maxwell’s equation with a general polarization term, absorbing left boundary con-
ditions and supra-conductive right boundary conditions as discussed and formulated
in the previous section. Through the use of a topologically equivalent definition of
the inner product, we may take €, = 1 for our discussion in this section. That is, we
are concerned with existence, uniqueness, continuous dependence and regularity of

solutions to

t .

(B,6)+ (1B, 0) + (BB, ) + (| at - 5)E(s)ds, ¢) +
((t)D, 9) + (CE', ¢') + cE(t,0)$(0) = (T (¢), ¢) (3.1)
E(0,z2) = ®(2), E(0, 2) = T(2). (3.2)
We seek solutions t — E(t) with E(t)in V = Hx(0,1) = {¢ € H(0,1) : ¢(1) =0}
satisfying (3.2) and (3.1) for all ¢ € V. We shall do this in the context of a Gelfand
triple setting V' — H — V* where H = L*(0,1). We assume throughout this section
that the slab region 2 = [z1, 23] has been mapped to [z1,1] so that our domain of
interest is Q = [0, 1] with v, 3, a(t) and &(t) bounded on [0, 1] and vanishing outside
[21,1]. Thus, in (3.1) the inner products should be properly interpreted in the sense
of (2.14),(2.15). However, as explained in the last section, one can equivalently treat

the well-posedness questions of this section using the unweighted L? inner product

20
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in (3.1) and we shall do this.

From a general theory presented in [BIW], [BSW, Chapter 4], one sees that (3.1)
differs from the usual lightly damped second order systems of [BSW| only because of
the presence of the terms cE(t,0)¢(0) due to the absorbing left boundary condition
and ([f a(t — s)E(s)ds, ¢) + (k(t)E(0), ¢) resulting from the convolution represen-
tation for the polarization. From the general theory one might expect to seek solu-
tions of (3.1) in the sense of L*(0,T;V)* ~ L*(0,T;V*) with E € L*(0,T;V),E €
I2(0,T; H) and E € L?(0,T;V*) for appropriate interpretation of the (-,-) in (3.1)
i.e., the duality product (-,-)y+y which reduces to the H = L? inner product in all
terms of (3.1) except the first and last. We recall from Section 2.3 that the input J(¢)
results from a point source (antenna) at z = 0 and hence J(¢) has the form ¢(¢)d(z)
for a windowed time signal g(¢). This motivates our desire for results allowing J (%)
values in V*.

In addition to differences one might encounter due to the polarization term, if
one obtains as usual £ € L2(0,T; H) where H = L?(0,1), then questions arise as
to the interpretation of the boundary term cE(t,0)$(0) which has the appearance of
pointwise evaluation of an L?(0, 1) “function” at z = 0. Correct interpretation of this
term will result from our arguments below.

We follow the general approach using sesquilinear forms as in [BIW],[BSW| which
are standard in the research literature [Lions], [Wloka]. We first rewrite (3.1) by
adding a term (kE,$)y to both sides of the equation. The positive constant k is
chosen so that ﬁA = k43 satisfies B > € > 0 on [0, 1] for some constant ¢; this is possible
since by assumption § € L>(0,1). We define a sesquilinear form o, : V. x V — C
by

o1(¢,9) = (¢, )y + (B¢, )y for ¢ € V.

Equation (3.1) can then be rewritten as

B0, 8-y + (B, 0)+ ([ alt = 9)E(s)ds, 8) + 01(B(©), 6) +
(K()2,6) + cE(,0)0(0) = (T (1), S)v-y + KEWD),6) (33
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for all ¢ € V, where it is readily seen that o; is V-continuous and V-elliptic. That

is, there are positive constants cq, co such that

01(6,¥)] < coldlv[Yly forall g9 €V,
o1(¢,0) > gy forpeV.

To establish existence of solutions (3.2), (3.3) where ® € V, ¥ € H, we follow the
ideas in [BSW] and choose a subset {w;}$°, spanning V' (without loss of generality
we may assume linear independence of these elements). Let V™ = span{wy, ..., wn,}
and define Galerkin “approximates”

m

En(t,z) =Y el (t)wi(z) (3.4)

i=1
where the {e["(t)}", are determined by substitution into (3.3) and requiring this

system of ordinary differential equations to hold for ¢ = w;,i = 1,2,...,m. This

m-~dimensional system is solved with initial conditions

m(0) = On

En(0) = Wy,
where the ®,,, ¥,, are chosen in V" so that ®,, - ®in V, ¥,, — ¥ in H. We thus
find that E,,(t) satisfies (3.3) with ¢ = E,,(t) € V so that for each t we have the

system

a1
dt 2
4 </0t alt — 8)En(5)ds, Em(t)) 11 + 01(Em(t), En()) + | Em(t, 0)

= (J(1), En(®))v+y + (kEm(t), En(t)) (3.5)
En(0) = ®,,, B (0) = U,,,.

B ()3 + (VEn (1), En(O) 1 + (5(1) @, Bon()) &

This system will allow us to obtain bounds for {E,}, {E,,}, and {E,,(-,0)} that are

independent of m.
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Using the fact that

1d

5 7501(En(), Bn(1)) = 01(Bn(t), Bn(1)),

we may rewrite (3.5) as

LB ®F + 01(En0), B} + IAER (O + el B, )P

= (— 5 a(t — s)E,(s)ds, Em(t)>H + (kEn(t), Em(t)>H + (=K, E’m(t)>

(T (@), En())vev
Integration along with use of the V ellipticity of o yields
: t . :
Bl + el B +2 [ V7 En5) s + 26| (-, 0) B0

< | Bn(0)[} + 2] En(0 |V+2|/ Fon(7)dr| (3.6)

Fn(r) = (- /OTOZ(T—S)Em(S)ds,Em(TD + (kEm(7), Em(7)) + (5®, En (7))
+ (T (), Em(T))vev
Ty (1) + To(7) + T5(7) + Ty(1).

Assuming that « is bounded on [0,7] x [0, 1] we have for 7 € [0, t]

T < [ KlBn(S)]udsl Bn(r)]n

1 T . 1 .
< 5(/ KB (5) ds)? + 51 B(7) iy
< 5% [ (o) ads + 51 En(r)l
1
< K% [ |Ba()ds + 5 B ()l

Thus we find

/|T1 |dT<K1/ | B (5) |2 ds (3.7)
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We also have
¢ t 1 1 .
| Blr < [GRIB) -+ 5 ()} ar (35)

and, assuming that x(t) is bounded on [0, 7] x [0, 1] also, we find
[ e <20+ [ i (3.9

Finally to consider the term T}, we use (assuming that 7 € L(0,T;V*))

CAT W), By = (T, By + T O, BulO) -

We obtain

[ Tuyir] = | [T (@), By = (T (7). By Y]
= ‘(j(t), Em<t)>v*,v - <~7(0)7Em(0)>v*,v - /0 <j(7—)’Em(7—)>V*,VdT‘
1 , 1 )
ST O + 51 En(0)ly
W+ 3 Bl (3.10)

1
< ITOR- + Bl +
t .1 .
+ /0 5176

Combining (3.6), (3.7), (3.8), (3.9), and (3.10) we obtain

. t . .

|En()|5 + (c1 — 26) | En(t)[5 + 2/0 IVAEm(5)[3ds + 2¢| Epn(-, 0) 720,
. 1 t .

< |En(0)[F + (c2a + D[En(0)[} + 517 (@) )i +/0 T (s)I;

V* S
t .
+ O+ [ {Col () + Col Bl + Cal Bu(s)1} Y. (3.11)

Ve +17(0

Assuming that J € H'(0,T;V*) and using the boundedness of {E,,(0)} in V and
{E,,(0)} in H (which follows from the convergences of {®,,} and {¥,,} respectively),
we may employ Gronwall’s inequality along with the inequality (3.11) to conclude
that {£,,} is bounded in C(0,T; H), {E,,} is bounded in C(0,T;V) and {E,,(-,0)}
is bounded in L?(0,7). Thus we find (extracting subsequences and reindexing as

usual) there exist E € L2(0,T;V), E € L*(0,T; H) and 2z, € L*(0,T) such that

E,, — E weakly in L*(0,T;V)
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En — E weakly in L?(0,T; H)
Epm(-,0) — 2z, weakly in  L2(0,7).

The limit function £ is a candidate for solution of (3.2), (3.3) and we must verify
that £ = E, zy = E(-,0) in some sense and that we may pass to the limit in the

version of (3.3) for E,, to obtain (3.3) for the limit function. First we note that for

each m
b
Eon(t) = En(0) + / Epn(s)ds (3.12)
0
and
t .
En(t,0) = B (0,0) + / Eo(s,0)ds. (3.13)
0
Passing to the limit (in the weak H sense in (3.12)) we obtain
t
E@lt) = <I>+/ B(s)ds (3.14)
0
t
E(t,0) = ®(0)+ / 20(s)ds. (3.15)
0

We find that (3.14) holds in the H sense for each ¢t € [0,7] and hence E = E
while (3.15) yields that E(¢,0) exists and is continuous in ¢. In actuality we have
E(t,0) is absolutely continuous with E(t,0) = z(t) for almost every t.

We note, in fact, that the same arguments used in [BSGII,Lemma 5.1(b)| can
be used to establish that E,, also converges weakly in C'(0,7; H) to E so that E €
C(0,T; H)N L(0,T; V).

Thus we have that our candidate E for solution of (3.2), (3.3) satisfies

E, — E weakly in L*(0,T;V) (3.16)
E, — FE weakly in L*(0,T;H) (3.17)
En(-,0) = E(-,0) weakly in L?*(0,T). (3.18)

We must show that E satisfies (3.3). For this we follow directly the arguments of
pp.100-101 in [BSW]. Taking ¢ € C'[0, T with ¢(T) = 0 and choosing 1;(t) = ¥ (t)w;
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where the {wj};?‘;l are as chosen before, we have, fixing j, that for all m > j, E,,

must satisfy

[ {0,500 + Gy Bn(e),050) + [ e = 9)Bn(s)ds, 5 (0)
+ 01(Bn(®),%5()) + (KD, 15) + cEn(t, 005 (1)(0)
= [T v+ Blt), 0,0 Y

Integrating by parts in the first term and then taking the limit as m — oo, with the
convergences of (3.16)-(3.18) we obtain

= B0, 5500 + BB, 00) + [ ale—9)E(s)ds,v,(0)
+ 0u(E(1). (D) + (5(B),10y) + cE(t, 01 (£)(0) fdt
= [T 050+ (BB, ()t + (T,05(0))

It follows that for every w; we have in the L?(0,T) sense

SABE)ws) + (B0, w) + ([ alt = 5)B(s)ds,w)

+ o1 (E(t), wy) + (1)@, wy) + cE(t, 0)w;(0) = (T (1), wj)v+ v + (KE(L), w;).

Since {w;}32, was chosen total in V' we thus obtain that E € I?(0,T;V*) and that
E satisfies (3.3). From (3.14) we know that E(0) = ® and the arguments that
E = U follow exactly as those on p.101 of [BSW]. Hence we find that E is a solution
of (3.2),(3.3).

Continuous dependence of solutions to (3.2), (3.3) on ®, ¥ and J follow readily
from the inequality (3.11) and some standard arguments. Noting that |- |z < p|-|v

for some constant p and letting
. 1
Kn = [Ea(0)i + (2 + DIEO) + 5 [T [z=014)

T .
+ ATOF+ [ 1T ($)fds + il (3.19)

we observe that (3.11) implies

(O + B0} < vE+ [ B+ )3}
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for some positive constant v independent of m. Using Gronwall’s inequality again,

we obtain

|Em (D)% + | En(t)]? < vKne'™  fort € 0,T]. (3.20)
Recalling that E,,(0) = ®,, — ® in V and E,,(0) = ¥,, — ¥ in H so that from (3.19)
we have lim, o K < K where K = |U[3 + (uCy + e + 1)| @[} + K|T 310 1.1+, We
may use weak lower semicontinuity of norms, the convergences of (3.16) and (3.17),

and (3.20) to conclude
|E|%2(O,T;H) + |E|i2(O,T;V) <vKe'" (3.21)

Since the mapping (®,V¥,7) — (E,E) is linear from V x H x H'(0,T;V*) to
L(0,T;V) x L*(0,T; H) we see that (3.21) yields continuous dependence of solu-
tions (E, E) of (3.2), (3.3) on initial data (®, ¥) and input J.

For uniqueness of solutions to (3.2), (3.3), we again follow the standard arguments
given in p.102-103 of [BSW]. In this case the details are tedious but rather straight-
forward. As usual, it suffices to show that the only solution of (3.3) corresponding to
zero initial data (& = ¥ = 0 in (3.2)) and zero input (J = 0) is the trivial solution.
Let E be a solution corresponding to ® = ¥ = 7 = 0 and for arbitrary s in (0,7)

define
0 { —[FE&)d¢ t<s

0 t>s
so that 14(T) = 0 and ¢s(t) € V for each t. We then find that
[ B, O + (B, @)}t =0,
Hence, choosing ¢ = ,(t) in (3.3) and integrating over ¢ from 0 to s, we have
[ B, B@) — B, 966 n ([ alt — DB (0)n
— 1(E(t),¥4(t)) — cE(t,0)1h5(t)(0) + (kE(t), 1bs(t)) g ydt = 0. (3.22)

Observing that

s

[ 1)+ B, By = [ S om, v =0
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d

201 (s(t), $u(t)) = 2Rear (B(t), va(t),

/OS{CE(t,o Vs (£)(0) + cE(t, 0)2}dt — /0 —{CE@ 0)45(1)(0)}dt = 0

and
%(kws(t), Ye(t))mr = 2Re(kE(t), (1)),

we may use (3.22) to obtain

LB + 501 (600 (0)) + 5 (ks (0), 1, (0)
+ /OS{<7E (t), E(t)) + cE(t,0)?

—Re(/ot (t — 7)E(r)dr, a(t)) )t = 0.

It follows immediately that

+ [UBO, B+ ([ alt— 7)) v, o)

0

From the definition of 1), we have for each ¢ € [0, T

VO < ([ 1B©1de)? < T [ B(E) s

so that

s 0), 00l = | [ k([ B(E, )
< |/0 kT/U B¢, 2)|2dedz|

— KT [ 1B(©)hde.
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(3.23)

(3.24)

(3.25)

(3.26)

Using (3.25) and arguments similar to those behind the estimate (3.7) for T7(7) we

find for t < s

([ alt =B @) = (- [ (- DB (0)]
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IN

([ Kol B ) (1)
5[ Bl Bdr)? + Sl 0%

< Ky [ 1B(©) e (3.27)

IN

Using (3.26) and (3.27) we thus obtain

SIEO) < AT + ko + Ko} [ 1B Byde (3.29)

B[ < K [ 1B (3.29)

for arbitrary s € (0,7]. Invoking the Gronwall inequality once again, we conclude
that E(£) =0 on (0,7) and solutions of (3.2), (3.3) are unique.
Summarizing our discussions in this section, we see that we have proved the fol-

lowing result.

Theorem 1 Suppose that J € H'(0,T;V*), v,3 € L>=(0,1),

a € HY(0,T;L>(0,1)), k € L>*(0,T;L>(0,1)) with o, (,~, K vanishing outside
[z1,1]. Then for ® € V. = H{(0,1),¥ € H = L*(0,1), we have that solutions
to (3.2), (3.3) exist and are unique. These solutions satisfy E € L*(0,T;V) N
C(0,T;H),E € L*(0,T;H), and E € L*(0,T;V*). Moreover, t — E(t,0) is ab-
solutely continuous with E(-,0) € L*(0,T). The solutions depend continuously on
(®,9,7) as maps from V x H x H'(0,T;V*) to L*(0,T;V) x L*(0,T; H).
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Computational Methods and Results

4.1 The Forward or Simulation Problem for the

Debye Polarization Model

In this section we present computational results for both forward problem simulations
and inverse problems based on the general formulation for the 1-dimensional geometry
given in Section 2.3. We are concerned here with numerical results for the special
case of a Debye medium 2 with €,(z) = €, defining the instantaneous polarization
in 2. We first, however, formulate a Galerkin finite element approximation scheme
for the system with general polarization.

We return to the differential equation (2.8) and express it in weak form by

(Ho€E, ¢) + (oo E, ¢) + (1o P, )
HE, &)+ 2B (1,0)6(0) = ~(uo(1,), ¢
where the polarization P is for the moment of the form given in (2.1) and the mapping
to = [0, 1] has already been carried out. The term %E’(t, 0)¢(0) is part of the weak
form of the absorbing boundary condition.
To facilitate the computations, we scale the time variable by a factor of ¢ =
1/,/€po and polarization P by a factor of 1/¢, (i.e., t = ct, P = P/ey). Furthermore,

we assume that the permittivity of the medium {2 is a constant. The new equation in

30
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the scaled variables (where we have dropped the overtildas on the scaled variables) is

<€7“E,¢> + 770<0E, ¢> + <P7 ¢>
+(E',¢) + E(t,0)p(0) = —no(Js, ¢) for ¢ € V. (4.1)

where €,.(2) = 1+ In(2)(€x — 1) is the relative electric permittivity so that € = €,€q
and the impedance of free space is defined 1y = y/po/€0 ~ 376.73 Ohms. Moreover,
the (-,-) are the weighted inner products discussed in Section 2.3.

We employ a first order Galerkin finite element approximation to discretize the
problem in the space variable, yielding piecewise linear approximations for E(, z)
and P(-,z). We partition the interval [0, 1] uniformly at the points z¥ = ih where
h=1/Nandi=0,...,N and construct the standard piecewise linear spline functions
#N(2) such that gbfv(zj") = §;; for 4,57 = 0,...,N. We omit ¢} in constructing our
finite dimensional approximating subspaces V¥ = span{¢?, ¢V, ..., ¢N_,} so that
for all the basis functions we have the essential boundary conditions ¢¥(1) = 0. The
computations reported on here are also simplified by the further requirement that the
material boundaries of the slab 2 = [z, 1] coincide with grid points. We denote the
index of the left boundary 2, of Q by j = L, i.e., ZY¥ = 2z;. Since the right edge of the
material has been mapped to z = 1, this corresponds to the grid point z¥.

We seek an approximate solution of (4.1) in the space VN C V = HL(0,1). Let
FEy and Py denote the the approximations of £ and P in this space so that

N—

E(t,z) ~ En(t,z) = e ()97 (2) (4.2)

—_

<
o

P(t7) = Px(t,2) = X o000 (2) (4.3)

J

[uy

By allowing both the space of solutions and space of test functions in (4.1) to be
VN in the weak form of the equation, we obtain in the usual way the Galerkin finite

dimensional system of equations given by

(M + Mg(€ow — 1))é + Mqp + (noo Mg + B)é + Ke = nyJ . (4.4)
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for e = (ef’, e, .., eN_1) and p = (', pY, ..., PN 1)-
The elements of the resulting N x N finite element matrices are computed in the

usual manner (for i¢,7 =1,2,...,N) by

_ . ) _ éi—léj—l _
Mi; = ($i-1,0j-1) = CTr -1l - ].)IQdZ
1 I _ _
MQ'L] = <¢i—l;lﬂ¢j—1> :/0 m%_lqﬁj_ldz (45)

1 _ _
Kyj = (00 0¢) ) = [ 0+ (= DI)d 16 1d3
Bij = ¢i-1(0)$;-1(0),

while

t.7i - < s;¢z 1 / 1+ S¢Z . dza

where the integrals are expressed in the scaled variables described in Section 2.3. We
note that the variables e, p as well as the coefficient matrices should carry the index
N, ie., pV,eN, MN KN, etc. But since this is well understood, we shall drop the
notation to that given in (4.4) and (4.5) in our subsequent discussions, reminding the
reader that as usual all these quantities depend on the spatial discretization index N
in the obvious ways.

We have not yet imposed a particular constitutive law to govern polarization
in the above formulation. We now restrict our consideration to the Debye model
given in equation (2.4). Applying the same scaling in time and to P as above, (i.e.,

P = P/ey,t = ct) we obtain the scaled Debye polarization law
P+AP = ¢MAE inQ (4.6)

where €5 = €, — €5, and A = 1/cr. Since this equation only holds inside the material
domain, we can equivalently multiply the entire equation by Io(z) and then the

Galerkin approximation results in the system of equations

Map + MaAp — MqAege = 0. (47)
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The matrix Mg is singular (the first L — 1 rows and the first L — 1 columns
vanish identically), so in actual computations we solve this equation for the nontrivial
variables p;,i = L, L+ 1,...N (i.e., po =p1 = -+- = pr_1 = 0). This is equivalent to
considering only the Lth through Nth elements of each vector (p,e) in the Galerkin
approximation equation for P. With this tacit understanding, we may write the entire

system of equations (4.4),(4.7) as
+ (ppoMgq + B)ée + Ke = n0J (4.8)
D+ Ap—Aege = 0. (4.9)

By substituting equation (4.9) and its derivative into equation (4.8) we obtain an

equivalent system of equations
(M —|— (600 — ].)MQ) 6 —|— ()\EdMQ —I— 7’}00’MQ —I— B)e
+ (=NeqMq + K)e + NX>*Mop = noJ (4.10)
D+ Ap— Aege = 0.

This can be written as a first order system in the composite variable z = (e, p, é)

as
Mi+ Kz =F
or,
I e 0 0 -1 e 0
I p |+ | —Xealrg Mir O pl=1] 0 (4.11)
M, é M, Ms M, e noJ
where

My, = M+ (e — 1) Mg
M, = —NeMqg+ K
M; = MM,

M, = Mgq(Xeg+moo)+ B
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and I g is the N x N identity matrix where the ones have been replaced with zeros
in rows 1 through L — 1.

We compute an approximate solution to this differential system with the stan-
dard Crank-Nicholson scheme, which is a member of a single parameter () family of
schemes. Briefly, this can be summarized as follows. For a given value of # and a step
size k, the family of schemes applied to the differential equation: & = f(¢,x) yields

the sequence of iterates x, ~ z(t,) = xz(nk) where
Tn+l = T + kfn+0 (412)

and
fn+0 = (1 - g)f(tmxn) + gf(tn—i-laxn-i-l)-

This family includes the Euler scheme when # = 0, the Crank-Nicholson scheme
when 6 = 1/2 and the implicit Euler when # = 1. Since z,.; appears on both sides
of equation (4.12), the method is implicit unless § = 0. Since our system is linear, it
can be solved directly for the value of x, 1 even in the case § # 0. Applying this to

our matrix system, we obtain another matrix problem for the iterations
Tp+1l = Ty + kyn

where
(M + kOK)y, = —Kx, + F,g (4.13)

and xy = 0, since the material is assumed to be initially electrically inactive. Equa-
tion (4.13) is reduced through block-Gaussian elimination to a block upper-triangular
system of size 3N — L+ 1, in which only a single block of size IV needs to be factored.
The LU factorization of this block can be computed once and used throughout the
computation. Computational experiments with different values of # did not produce
any substantial improvement in accuracy over § = 1/2 for our particular systems.
The Crank-Nicholson scheme is also known to be unconditionally stable and second

order accurate. Unlike the explicit (f = 0) and ordinary implicit (# = 1) members of
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Time=0.7 ns
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Figure 4.1: Debye model simulation (¢ = 0.7 ns)

this family, Crank-Nicholson is also not excessively dissipative (see [Glo, p100-101}).
Hence in the numerical results described below all calculations were carried out with
the standard Crank-Nicholson time stepping scheme.

We report graphically a sample of results from our forward simulations for the
model with Debye polarization. Figures 4.1 through 4.4 depict (through time snap-
shots at t = 0.7,5.0, 7.0, 10.0 ns) the propagation of an electromagnetic wave through
a material slab lying in z € (.33,.89). The material parameters are: o = 1.0 X
1072 Ohm™!, 7 = 1.0 x 10~"! seconds, €, = 35, €so = 5,w = 27 x 1.8 GHz. The nu-
merical method is as described above, with the results depicted in the unscaled (i.e.,
in the original scales) spatial (z) and time (¢) axes.

In Figure 4.1 the incoming wave generated by the current source at z = 0 has
yet to reach the left edge of the material at z; = 1/3. In Figure 4.2 the signal has
subsequently been partially reflected and partially transmitted. The reflected part of

the field is the first part to be measured in the inverse problems discussed in the next



36

Chapter 4. Computational Methods and Results

Time=5.0 ns

150
100

50+
0
-50

-100

-150

0.8

0.7

0.6

Figure 4.2: Debye model simulation (¢ = 5.0 ns)
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Figure 4.3: Debye model simulation (¢ = 7.0 ns)
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Time=10 ns
8 T T T T T
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Figure 4.4: Debye model simulation (¢ = 10.0 ns)

section. In the transmitted part we see the formation of the signal precursor (the Bril-
louin precursors— see [APM, Bri]), which becomes more pronounced in Figures 4.3
and 4.4. These simulations were performed on an interval of length 1 with N = 450
and the time step was k = 1 x 104 Comparison of these (and other simulations)
with independently generated solutions (finite difference and Fourier series) demon-
strated the general accuracy and efficiency of the piecewise linear/Crank-Nicholson
approximation methods in forward simulations and we turned next to the use of these

ideas in inverse problem techniques.

4.2 The Inverse or Estimation Problem with the

Debye Model

The objective of the inverse problem is the reconstruction of the values of the parame-

ters in the polarization model and the boundary geometry using information obtained
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through a scattering experiment of the type described in Section 2.1. Observations
from the experiment are limited to sampled values of the electric field at selected
points outside the material domain 2. The estimation problem is to minimize a suit-
able measure of the difference between the simulated prediction and a set of data
taken from experiments. The goal of our investigation here is the test the feasibility
of this approach for the identification of dielectric and geometric parameters.

We use the same physical problem as in the forward problem described in Sec-
tion 2.3; this involves a homogeneous slab obeying the Debye model of polarization
and a planar electromagnetic interrogating signal. Therefore our observations and
data consist of scalar values representing the 7 component of the electric field. The
experimental observations, consist of the value of the electric field at z = 0 at uni-
form intervals in time ¢; = AT4%. Let E; denote the data we seek to reconstruct
and E(t, z; ¢) be the electric field arising from a scattering experiment with dielectric
and geometric parameters ¢. The inverse problem is performed by minimizing the /2
difference between the data and the simulation results.

S
{Ipeicrgl J(¢) where J(q) = ZZ_:I |E(t:,0;q) — Ei|?
where S is the number of sample data points. The set of admissible parameters () is
chosen to enforce limitations on the parameters that arise from physical or geometric
considerations. The formulation of physical problems generally requires that physical
parameters be non-negative. Geometric bounds will be determined according to how
the boundary is represented by the parameters, and will reflect both mathematical
constraints and physical limitations on the boundary. This set can be made compact
by providing both upper and lower bounds for each member.

To test the feasibility of the estimation approach we produce synthetic data for
the observations E; by adding random noise to the results of the simulation with a
known set of parameters. The absolute magnitude of the noise is relative to the size of
the signal, reflecting the relative nature of uncertainties in measurements. Letting F;

be the data sampled from the solution with the true parameters, i.e., E; = E(t;,0; ¢*),
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we define E; = E;(1+ xn;) where the 7; are independent normally distributed random
variables with mean zero and variance one. The coefficient x is chosen to adjust the
relative magnitude of the noise. We express the magnitude of the noise as a percentage
of the size of the signal by taking two times the variance as the size of the random
variable. Hence x = 0.05 corresponds to 10% noise and x = 0.025 to 5% noise.

The feasibility of the inverse problem is measured by how successful it is at re-
covering the original values ¢* and the sensitivity of the results with respect to the
magnitude of the noise x. In the absence of noise, an exact match for the parameter
values has an error of zero (or roughly machine precision, allowing for non-essential
differences in the method of computation). Minimizing J(§) is performed though an
I+ trust region adaptation of Newton’s method, using a BFGS secant update for the
approximation of the Hessian of the objective function —2—.J ().

0q;0q;
The parameters arising in the Debye model of polarization are the conductivity

o, the infinite and static limits of the dielectric permittivity €., €; and the relaxation
time 7. (Strictly speaking, the conductivity o is not part of the polarization model,
but for convenience we will always group it with the other parameters which describe
the dielectric properties of the material.) We will directly identify the related set of
parameters ¢ = (0, €, €4, \) Where ¢4 = €, — €5, and A = 1/er. These parameters
appear as coefficients in the scaled version of the equations and early simulation
results indicated that the optimization problem is better posed when expressed in
terms of A rather than 7. This also resolves problems arising from the difference in
scale between 7 and the other parameters, since the typical magnitude of X is around
400. In a subsequent problem we will add the identification of the thickness of the
slab d = 25— z;. In the scaled version of the equations this is done through identifying
the scaling parameter ( = (1 — z1)/(29 — 21) which appears in the definition of the

weighted inner products.
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Sample Results

We present results from the inverse problem of identifying the dielectric parameters
in the Debye model. The data to be identified are generated with the Debye model

using the following (“true”) parameter values:

o = 1x107°

T = 81x107"
e, = 80.1
€ = 0.9

These parameters are considered reasonable for modeling the polarization behavior of
water. The carrier frequency of the interrogating signal is 1.2GHz (hence the angular
frequency is w = 27 x 1.2 x 10? = 7.54 x 10° rad/s) and the duration of the window is
1.67 ns, which is two complete periods. The data consist of 100 measurements of the
electric field taken at z = 0 every 0.06 ns from ¢ = 0.06 ns to ¢ = 6 ns. The width of
the slab is a fixed quantity sufficient to ensure that the portion of the interrogating
signal transmitted through the surface at z = z; has not returned to z = 0 after a
subsequent reflection off the back boundary.

Eight different attempts are made at the inverse problem, each with a different
level of random noise added to the data. The initial values of parameters used in all
of the inverse problems are oy = 1.5 X 107°, 79 = 10.0 x 107!2, €59 = 73.1, €sp = 6.0.
The results are summarized in Table 4.1.

We note that only the parameter ¢, is consistently recovered in this inverse prob-
lem. While some of the values of 7 are close, the converged values of ¢ and €, are
substantially off at all levels of noise. A partial explanation for the differing sensitiv-
ities can be found by examining the equations which give rise to the wave equation

and polarization equation. Consider the polarization equation,
TP + P = ¢(e; — €x) E. (4.14)

The small magnitude of 7 suggests that P ~ ¢y(€5 — €5, ) E. We use this as the basis
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Test % Noise o T €s €00 residual
True values: 1.0x10™° 81x1072 80.1 5.5

Initial values: | 1.5 x 10™® 10.0 x 107'2  73.1 6.0
1 0.0 9.96 x 1076 8.10 x 1072 80.10 5.51 | 6.50 x 10~19
2 0.5 0 1.23 x 1071 80.20 29.74 | 2.18 x 102
3 1.0 0 9.18 x 1072 80.15 13.89 0.128
4 1.5 1.14 x 1072 2.89 x 10711 81.18 60.02 0.263
5 2.0 0 6.49 x 1072 80.46 1.00 0.474
6 2.5 7.34 x 1072 1.93 x 10~ 80.04 48.68 0.575
7 3.0 0 1.30 x 10~ 79.95 31.10 0.835
8 5.0 5.56 x 1072 3.77 x 1072 78.82 28.07 2.035

Table 4.1: Estimated Parameters in Debye Inverse Problem. Test 1

of an approximation to P. Let P; = €y(e; — €x)F and P = P, + P,. The remaining

polarization P, satisfies the new differential equation
TP+ P = —Tép(€s — EOO)E. (4.15)

Note that this is the same equation as for the original polarization with a different

driving function. We substitute into the equation for the electric flux density and
find

D = e B+ P
= ¢y, + P,

When the wave equation is derived from this new expression for D, e, replaces €4, as
the coefficient of the E term and the parameter € only appears in the differential
equation for P,. It remains to argue that the magnitude of this polarization term is
much smaller than that of the original P. We make an argument for this based on the
roughly periodic nature of the electric field. At any point, when the electric field is
not zero (i.e., outside the windowed pulse) the electric field is approximately periodic
with a known angular frequency w. From this we conclude, very approximately, that

|E| =~ |wE|. Comparing the magnitudes of the driving terms in the original (for P)
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x 1072 Normalized objective function values at 1.2 GHz
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Figure 4.5: Plot of J(q) — J(q*) versus €

and new (for P,) polarization equations we have |E|/|7E| ~ 1/wr. For the parameter
values 7 = 8.1x 1072 s and w = 7.54 x 10° rad /s we would expect that that magnitude
of P is about 16 times as great as P,. Furthermore, €., is many times smaller than
€, and therefore affects the coefficient of the driving term less. This suggests that the
effect on the solutions to the forward problem of the parameter €., is dwarfed by that
of €.

We illustrate this idea graphically by plotting the objective function J(g) as a
function of €., alone. The plots of the objective functions in Figures 4.5 and 4.6 are
normalized by subtracting the value of J(¢*). When no noise in present in the data,
this value is zero. The values when noise is present are given in Table 4.2.

Comparing the two figures, we can see that the objective function is more sensitive
to €4 for the larger frequency and that the minimizing value of €., is closer to the
true value. For the case of 5% noise and w = 27 x 1.2 rad/s the minimizing value

of €, has apparently slipped below the minimum value of €,, = 1, the lowest value
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Figure 4.6: Plot of J(q) — J(q*) versus ey

frequency (GHz)

Noise level 1.2 3.6
2.5% 0.772 5.30
5.0% 3.01 21.20

Table 4.2: J(¢*) in the presence of noise

43
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Normalized objective function values at 1.2 GHz
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Figure 4.7: Plot of J(§) — J(q*) versus ¢

of €, allowable on physical grounds. For comparison, we also show the dependence
of the objective function on the parameters €, in Figure 4.7 and ¢ in Figure 4.8.
Even in a comparatively small range of values for €,, we see that the dependence is
much stronger and that the minimum value is not perturbed as far as e,,. On the
other hand, the dependence of the objective function on ¢ is moderate for a range of
values which is several orders of magnitude larger than the value of o itself. Hence,
we expect that o is a difficult parameter to recover accurately, when accuracy is
measured relative to the size of the parameter.

The new polarization equation (4.15) also suggests that it may be difficult to
separate the parameters 7 from e, since the same analysis as before leads us to
conclude that P, = —7€(€;— €5 ) E. Here, T and €, appear together in the coefficient
of the driving term and any other influence of 7 on the solution has been ruled out
by this approximation. While it should be possible to estimate the size of the driving

term’s coefficient, it would not be possible to identify particular values for e, and



Chapter 4. Computational Methods and Results 45

Normalized objective function values at 1.2 GHz
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Figure 4.8: Plot of J(q) — J(q*) versus o

fixed ey ‘ estimated 7 estimated e, residual T(€s — €s0)
1.0 7.62 x 10712 79.96 3.94 x 107 6.02 x 1071°
5.5 8.10 x 10~12 80.10 6.36 x 10~ 6.04 x 10710
10.0 8.64 x 10712 80.26 1.61 x 107*  6.07 x 10710

Table 4.3: Parameters resulting from incorrect €.,

7. (The parameter €5, which is also present in the coefficient, is distinguished by
its appearance in the wave equation.) This observation is borne out by results from
another inverse problem in which the values o and €., are held fixed. The conductivity
o is fixed at zero and the interrogating frequency is 3.6 GHz. Performing the zero-
noise inverse problem, we obtain different values of 7 according to the fixed value of
€. These results are summarized in Table 4.3.

The residual column of Table 4.3 indicates that it is possible to get an accept-

ably low residual value with parameters far from the “true” values which generated
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Test % Noise | o (fixed) T € €oo (fixed) residual
True values: | 1.0 x 10™° 8.1 x 107"  80.1 5.5

Initial values: | 1.5 x 107® 10.0 x 1072 73.1 6.0
1 0.0 0 7.62 x 10712 79.96 1.00 3.942 x 1073
2 0.5 0 7.64 x 1072 80.37 1.00 0.208
3 1.0 0 7.65 x 10712 80.79 1.00 0.834
4 1.5 0 7.66 x 10712 81.21 1.00 1.877
5 2.0 0 7.67 x 10712 81.63 1.00 3.338
6 2.5 0 7.68 x 10712 82.06 1.00 5.217
7 3.0 0 7.70 x 10712 82.49 1.00 7.513
8 5.0 0 7.74 x 10712 84.24 1.00 20.87

Table 4.4: Estimated Parameters in Debye Inverse Problem. Test 2

the data. The last column shows that the coefficient of the driving term in the po-
larization equation (4.15) is being accurately reconstructed each time, even if the
particular parameter values are wrong. This suggests that the difficulty surrounding
the identification of the parameters €., and 7 arises because these two parameters are
strongly coupled together in their influence on the objective function. The relatively
low sensitivity of the objective function to these parameters (compared to ;) further
suggests that parameter values obtained by arbitrarily fixing one of the parameters
and identifying a corresponding value for the other will yield parameters which cap-
ture the dynamics of the problem accurately (i.e., yield a small residual). To test
this approach we perform the optimization problem with the parameter €., fixed at
the value 1.0 and the conductivity o fixed at zero. The results are summarized in
Table 4.4.

In the event that the exact value of €, is known, we can fix the parameter at this
value in the optimizations. The results of performing the inverse problem with e,
fixed at its correct value of 5.5 are shown in Table 4.5. We notice that except in the
case of zero noise that the residuals are slightly higher when the correct value of €, is
used than when €., = 1.0 is used. This is explained by our observation in Figures 4.5

and 4.6 that the presence of noise uniformly lowers the optimal value of €.
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Test % Noise | o (fixed) T €5 €so (fixed) residual
True values: | 1.0 x 10 8.1 x 107  80.1 5.5

Initial values: | 1.5 x 107 10.0 x 1072 73.1 6.0
1 0.0 0.00 8.11x 10712 80.5 5.5 6.364 x 10710
2 0.5 0.00 8.12 x 10712 80.93 5.5 0.209
3 1.0 0.00 8.13 x 10712 81.35 9.5 0.835
4 1.5 0.00 8.14 x 10712 81.77 5.5 1.879
) 2.0 0.00 8.14 x 10712 82.20 9.5 3.341
6 2.5 0.00 7.68 x 10712 82.06 5.0 5.220
7 3.0 0.00 7.70 x 10712 82.49 5.0 7.517
8 5.0 0.00 7.74 x 10712 84.24 5.5 20.88

Table 4.5: Estimated Parameters in Debye Inverse Problem. Test 2

Identification of Material Depth

Identifying the depth of the material with this method proved to be more difficult than
identifying other parameters. We add the scaling parameter to the list of parameters
to be identified, so ¢ = (0, €4, €x, A, ) and consider a slightly different inverse problem.
In this case, the material is sufficiently thin and the duration of the data collection
sufficiently long so that the part of the interrogating signal transmitted through the
medium had returned after being reflected off the metallic back boundary. This is
clearly necessary in any attempt to recover the depth of the sample.

We see in in Figure 4.9 the complicated dependence of J(g,d) on d, owing to the
oscillatory nature of the time domain data. (The results are presented in terms of
the actual thickness d instead of the scaling parameter ¢). Here, J(¢*,d) is plotted
for various values of d with the other parameters held fixed at their true values. The
true depth of the material is d = 0.05, corresponding to the global minimum of J(§).
(This example uses the parameter values for water given above.)

Figure 4.10 depicts one cause of the multiple local minima apparent in Figure 4.9.
With the incorrect value of d, the return of the transmitted and subsequently reflected

part of the interrogating signal is delayed by two full periods of the input signal. This
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Figure 4.9: Error as a function of material depth.

brings it back into partial synchronization with the data, giving it a smaller error
than nearby values where the data is out of phase. This produces a local minima as
seen in Figure 4.9.

Optimization results using the function J(¢) where ¢ includes the scaling param-
eter ( were very poor, even when only attempting to identify the depth d. Solutions
tended to incorrect local minima for all but a very narrow range of initial values of d.
This led us to develop another procedure for identifying depth, based on identifying
the return time of the transmitted part of the interrogation signal.

We separate the geometric parameter ¢ from the rest of the parameters in ¢ to
clarify parts of the following discussion. Here, § contains just the physical (material)
parameters and ¢ = (¢, (). We will interchangeably discuss estimation of the parame-
ters ¢ and d with the understanding that the actual optimization is always performed
over ¢ and that the two parameters are related through ¢ = (1 — z;)/d.

Let t,(G,d) be the time at which the signal which penetrates ) first returns to
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Figure 4.10: Illustration of local minima at d = 0.07

z = 0 after being transmitted through the medium and reflected off its back surface,
expressed as a function of the material parameters and the depth of the sample. Let
A and 6 be positive constants with values to be determined and ¢} be the duration of
the interrogation signal. We approximate the return time by: ¢.(q,d) =~ t,(¢,d) = &,

where 7 is the first index such that:

Ei — Ei

v

A(ti —tio1) (4.16)
ti > (1406)(221 +1t5). (4.17)

Equation (4.16) is satisfied when the finite difference approximation to Ey(t,0)
is greater than the constant A. The constraint in equation (4.17) prevents the test
from detecting the first reflection off the surface of €2, which is over at t = 221 + 3.
(Note that the time is expressed in the scaled variable.) The parameter § is chosen
to delay detection further in order to avoid detecting numerical noise or the decaying

electric field which trails behind the reflection when the value of the conductivity o
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Figure 4.11: f;(d) for example problem.

is large. Typical values of these parameters which give good results are A = 20.0 and
6 = 0.05.

We use the estimated return time #(g,d) to identify the true material depth d*.
Let £(¢*, d*) be the estimated return time (satisfying equations (4.16) and (4.17)) for
the true data E;, generated with the true parameter values ¢* and material depth d*.
We then look for a root of the equation f;(d) = t(q¢*,d) — t(¢*,d*), which represents
the difference in estimated return times between the simulation and the data.

The function f;(d) corresponding to the example given in detail below is plotted
in Figure 4.11. The plateau of values for large d occurs because the deep reflection no
longer returns before the end of the simulation and the detection algorithm returns
ts, yielding fi(d) = t; — t,.(q*, d*)

Because fi(d) is a discontinuous function of a single variable, we employ Brent’s

method [PTVF, p.352] to approximate the root, since it does not rely on derivative
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Noise Level % | Converged to
0.5 | 0.099996
10.0 | 0.099926
20.0 | 0.09985
30.0 | 0.09978
40.0 | 0.09972
100.0 | 0.09934

Table 4.6: Results of depth estimation

information. The piecewise constant character of f;(d) also limits the accuracy avail-
able in the estimate of d. Therefore, we adopt a two-step approach to finding the

final value of this parameter.
1. Use Brent’s method to find an estimate d; of the root of f;(d).

2. Use (1 = (1—21)/d; as an initial value for the continuous optimization of J(g*, d)

over the single parameter (.

Results The two step approach described above is extremely effective. For a test
problem using the physical parameters for water (¢ = 1.0 x 107°, ¢, = 80.1, €, =
5.5,7 =81 x 107") and w = 27 x 2.33 GHz, t} = 1.66 ns,t; = 8.33 ns and d* = 0.1
a wide variety of initial values of d in the range (0,1.0) lead to convergence to the
correct value. In these simulations, AT = 4.66 x 10~ ns and the parameters in the
signal return detection are A = 20.0,6 = 0.05.

The identification of the material depth is also very insensitive to noise in the
data. We tested the sensitivity of the problem by adding normally distributed ran-
dom noise of various magnitudes to the data set as in Section 4.2 and repeated the
inverse problems using the initial value dy = 0.02, with the results obtained shown in
Table 4.6.

Here we can see that noise as large as the amplitude of the original signal does

not affect the depth estimation very much. This robustness of the depth estimate is
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due in part to the nature of the noise. Since it is relative noise, it has little effect
on the data points between the surface reflection and the return of the signal which
penetrated the material since these values are all nearly zero. Thus the return time
of the signal is not effected, since the point at which the data has its first substantial
jump is the same. Furthermore, the minimum of J(q) is still attained by the value
of d for which the penetrating part of the signal returns at the correct time, causing

the zero and non-zero parts of the data to match.

Estimating Depth and Physical Parameters

The method described above for estimating the depth d is limited by the need to
know the exact values of the physical parameters ¢* to form the function f;(d) =
t(¢*,d) — t(g*,d*). We eliminate this requirement by modifying the algorithm and

obtaining the following three step process.

1. Estimate the physical parameters by minimizing J(§¢) over the physical param-
eters ¢ only. Do this over a data set sufficiently short so that it only contains
the exterior surface (i.e., z = z;) reflection. Choose (yp = (1 — z1)/dy such that
the penetrating signal does not return from the back boundary in any of the
simulations. To do this, choose t; < ¢,(¢*, d*) and t; < t,(q, do) for a wide range
of values of ¢ and dy. Estimate ¢; only using the data E; where t; < t/f.

2. Using the estimate §; from step 1, find the root of f}(d) = t(q,d) — t(¢*, d*).
Call this estimate d;

3. Use the estimated value (; = (1 — 21)/d; from step 2 and the estimate ¢; from

step one as an initial estimate for minimizing J(q).

To accomplish step 1, we use the physical property that the speed of propagation
of waves in the media cannot be any faster than is it in vacuum. Since the deep
reflection must transverse the distance z; twice at speed one and the depth of the

material twice at no more than speed one, ¢,.(q,d) > 2(z; +d) for all parameter values

q.
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We need to choose the reduced test time t’f so that it is after the end of the first

reflection and before the beginning of the deep reflection. Hence,
221 + 13 <t <22 +2d (4.18)

Using this conservative estimate, we can guarantee the existence of a suitable test
time #}; where d > t}/2 and where t% € [22 4 t{, 22 + 2d]. In practice, we can relax
the constraint on d because the typical speed on propagation in these materials is

much less than 1. This is the case in the example given in the next section.

Results

Our example for this inverse problem uses the following physical parameters for the
generation of data: o* = 1.5 x 107°, 7* = 8.1 x 1072, €f = 80.1, €', = 5.5, d* = 0.05.
These parameters will be estimated in the inverse problem. The leading edge of
the material is at 2; = 0.25 and the simulation is run until ¢{; = 7.33 ns, which is
sufficient time for the transmitted part of the signal to return to z = 0 after subsequent
reflections off the far boundary. The duration of the input signal is ¢3 = 1.66 ns and
its frequency is w = 27 x 1.8 GHz, yielding three full oscillations. The data is sampled
110 times over the duration of the simulation, hence AT = 0.0667 ns. The resulting
data collected at z = 0 is plotted in Figure 4.12. The transmitted pulse can be seen
passing through z = 0 over the time span 4.3 ns to 6.7 ns.

Notice that the right inequality in equation (4.18) is not satisfied by this value of
d. We can see from Figure 4.12 that the slow propagation of the signal through the
medium nevertheless results in a gap between the end of the first reflection and the
beginning of the transmitted signal.

The first stage of the optimization is carried out over half of the data up to the
time ¢ = 1.1. The data was generated numerically using 600 basis elements in the
spatial (finite element) approximation. As before, random noise is added to the results
of the forward problem to generate synthetic data for the inverse problem. Various

initial values are used to test the range of convergence for the optimization problem.
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Data for full inverse problem
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Figure 4.12: E; for inverse problem.

The results of one such test are given in Table 4.7.

As before, we see that the estimates of ¢ and e, are not very good, while €, and
T are comparatively robust with respect to noise in the data. Further, the estimated
depth of the sample is largely insensitive to noise. Performing the experiment again
with a different initial value yields similar results as given in Table 4.8.

Aside from the unreasonable values (underlined in Table 4.8) which appear in the
case of 2.0% noise, these results resemble those in the previous trial, especially in the
values of €, and 7. As before, the depth measurement is quite accurate. The results
of the 2.0% trial indicate that the method as presented here is not perfectly robust,

and some caution interpreting results is called for.
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% Noise o T €s €oo d residual
True values: | 1.0 x 10™® 81x 1072 80.1 5.5 0.05
Initial values: | 1.0 x 107> 8.2 x 1072 81.0 5.3 0.055
0.0 2.0x 1075 8.07x 107! 80.09 5.19 0.0500 | 8.89 x 107
0.5 1.3x 1072 7.86x 1072 79.84 3.34 0.0501 | 5.14 x 1072
1.0 0.0 7.76 x 1072 79.85 2.23 0.0501 0.150
1.5 3.70 x 1075 7.99 x 1072 78.94 4.37 0.0503 0.352
2.0 0.0 7.76 x 10712 80.31 2.38 0.0499 0.779
2.5 423x107° 7.52x10712 77.82 0.0 0.0503 0.931
Table 4.7: Simultaneous Estimation of Debye Parameters and Depth. Test 1
% Noise o T €s €oo d residual
True values: | 1.0 x 10™° 8.1 x 1072 80.1 55 0.05
Initial values: | 1.0 x 1072 10.0 x 1072 90.0 3.0 0.1
0.0 82x107% 811 x 1072 80.10 5.58 0.0500 | 5.557 x 1078
0.5 1.3x1072 7.88x101'2 79.84 3.48 0.0501 | 5.149 x 102
1.0 0.0 777 x 10712 79.85 2.29 0.0501 0.150
1.5 3.70 x 1072 799 x 10712 7894 4.33 0.0504 0.352
2.0 8.00 x 1072 12.36 x 1072 80.60 41.72 0.119 57.63
2.5 423 x107% 7.52x 1072 7882 0.0 0.0504 0.931
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4.3 Forward or Simulation Problem with the Lor-

entz Model

The underlying numerical formulation for simulations using the Lorentz model is
the same as that for the Debye model up to and including the the finite dimensional
system of differential equations in (4.4) and the matrix definition in (4.5). We depart
from the previous formulation in the choice of constitutive law to govern polarization.
We use the Lorentz equation discussed in Section 2.1. Applying the same scaling as

before, we obtain the scaled Lorentz polarization law
P+2\P+ajP =02E (4.19)

where wy = wp/c,w, = wp/c and A = 1/2¢r. The derivation of the finite element
equations for the polarization precedes exactly as in the Debye case, with the same
provision that components of the variables p and p which are identically zero are
dropped. (These are the ones corresponding to the exterior of the material domain

2). The resulting system of equations is

(M + Mg(€sw — 1))é + Mqp
+ (noMq + B)é + Ke = n0J (4.20)
P+2Xp+&pp —@2e = 0. (4.21)

By substituting equation (4.21) into equation (4.20) we obtain an equivalent system

of equations

(M + (€00 — 1)Mgq) € + (noo Mq + B)é
+ (@) Mq + K)e — @i Map — 2X°Map = n0J (4.22)

P+2Xp+@fp — @

2
2e = 0. (4.23)

This can also be written as a first order system in the composite variable z =

(€7p7é’p) aS
Mi+ Kz =F
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where

M o= (4.24)

0 0 I 0
0o 0 o0 I
K, K, K3 K,
~@2 IO 2)T |

and the submatrices are

M, = M + (e —1)Mg (4.25)
Ky = (&}Mq+K)

K, = —&iMg

K3 = (moMq+ B)

K, = —2X\My

In the implementation, a matrix-free method is used which avoids constructing
the large and irregularly sparse matrices M and K. The matrix-free implementation
works by providing a function which computes the derivative of the composite state
variable x to a software routine which performs the quadrature. The function for
computing the derivative is made faster by re-using the computation of j, which is
part the of the derivative of the state and also appears in equation (4.20) where it is
used in the direct computation of €.

Difficulties arise in the computation of solutions to the above equation when using
physically realistic values of the material parameters, as the resulting linear system of
equations is exceedingly stiff. We use the parameter values €, = 2.25, ¢, = 1.0,wp =
4.00 x 10, 7 = 3.57 x 10716 and the corresponding plasma frequency is w, = 4.472 X
10'6. These are typical values in the study of physical optics [BF]. We perform the
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discretization described above on a grid of size N = 100 with the left edge of the
material located at z = 0.01 and the right edge at z = 0.1. We computed the
matrices M and K using Matlab and from this found the condition number of the
linear system matrix x(M 1K) = 3.23 x 10*°, making this an extremely stiff system
to be integrated. In the fourth order Runga-Kutta methods applied to this equation,
the largest step sizes which did not lead to the blowup of the system are generally
around k£ = 1 x 1078, To generate solutions to this system of equations, we must be
content with very short simulations which observe the pulse propagating through a
very short distance.

The following results are generated from a simulation where the material occupies
the interval (1.0 x 107%,1.0 x 107°), and with material parameters €, = 2.25, €5, =
1.0,wp = 1.779 x 106, 7 = 7.14 x 10716, The frequency of the interrogation signal is
taken to be 8 x 10° GHz and the duration of the signal is equal to twelve of its periods.
(The high frequency is necessary in order to see the formation of the Brillouin and
Sommerfeld precursors associated with the Lorentz model.) The resulting pulse train
thus has twelve complete cycles. Solutions from the simulation are are displayed
graphically in Figures 4.13, 4.14, 4.15, and 4.16.

In Figure 4.13 the pulse is traveling to the right after having just entered the
material. In Figure 4.14 it has undergone two reflections, first off the supra-conducting
back boundary followed by a partial reflection off the surface at z;. Figure 4.15 is
two reflections later again, and in Figure 4.16 the pulse is traveling to the left after
another reflection off the back boundary. Here we can see that the pulse has resolved
into a part which resembles the Brillouin precursors encountered in simulations of the
Debye model, and another part associated with the Sommerfeld precursors. These
precursors are examined in detail in [BF] using a frequency domain approach.

These plots were made from a simulation using one thousand basis elements in the
discretization of the space variable and with a step size of k = 3.0 x 107 in the scaled
time variable. This represents an actual time step of 1.0 x 10~ ns and over 26,000

steps are required to reach the state shown in Figure 4.16. Certain limitations of the



Chapter 4. Computational Methods and Results

150

100

50

electric field
o
T

-100

-150
0

10

-4+

Figure 4.14: Lorentz model simulation (¢ = 1.33 x 107 ns)

29



Chapter 4. Computational Methods and Results

electric field

electric field

Figure 4.16: Lorentz model simulation (¢ = 2.67 x 107 ns)

60



Chapter 4. Computational Methods and Results 61

accuracy of the simulation are also visible in Figures 4.13 through 4.16. The persistent
distance of the solution from zero outside of the pulse is accumulated numerical error.
Although this error appears negligible in Figure 4.13, the subsequent decay in the

magnitude of the pulse continually increases the relative size of this error.

4.4 The Inverse or Estimation Problem with the

Lorentz Model

Because of the long execution times of the forward simulations using the Lorentz
model, we restrict our attention to the identification of parameters using the reflection
of the interrogating signal off the surface of the material and do not attempt to identify
the material’s depth. Based on our experience with the Debye equation, we also do
not attempt to identify the conductivity parameter ¢. However, unlike the Debye
problem, this problem is adequately sensitive to the parameter €,,. Our attempts at
estimating the parameters in the Lorentz model take place in a test problem with a
slightly different set of physical parameters than used in the example above (since
those parameters were chosen to accent the precursor development for demonstration,
we now choose parameters more representative of real materials [BF|). Here we use
€s = 2.25, €5 = 1.0,wp = 4.0 x 106, 7 = 3.57 x 10716 The interrogating signal is given
a frequency of 1.2 x 10'* Hz and the signal is stopped after four complete periods of
the input (% x 10713 sec). The data for the inverse problem is depicted graphically in
Figure 4.17

The first trials of the inverse problem attempt to establish a rough radius of
the acceptable initial values for the parameters to be successfully estimated. This
optimization is attempted first over the two parameters wy and w, and then over three
parameters wp, w, and 7. Note that the optimization over 7 is actually performed
through the related parameter A = 1/2c7. The initial values for the parameters are
found by perturbing the “true” values by various relative values, i.e., w) = (1+ x)w;.

A value of y = 0.05 yields a 5% perturbation of wy, for example.
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Data for Lorentz inverse problem
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Figure 4.17: Data for Lorentz inverse problem

% Distance ‘ €oo wo Wp T ‘ residual

True values: | 1.0000 4.0000 x 10'® 4.4721 x 10 3.57 x 1016 0.0
20% 1.0001 3.9958 x 106  4.4675 x 10' 3.57 x 10716 | 4.311 x 102
30% 1.0001 4.0000 x 106 4.4720 x 10 3.55 x 10716 | 1.564 x 103

Table 4.9: Convergence results over wy and w,

The first attempts on the Lorentz model with the [, trust region code used with
the Debye model encountered difficulties arising from the scale and sensitivity to the
parameters. The algorithm quickly became saddled with a trust region which was too
small to allow sufficient progress to the minimum, or which caused successive steps
short enough to trigger the convergence criterion prematurely. This was remedied by
switching to a line-search method and scaling the parameters to give them similar
magnitudes. The scaling factors used with each parameter are 1 for e, 1 x 10® for

wp and ws and 1 x 10¢ for . This produced the results given in Table 4.9.
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% Noise €00 wo Wp T residual
True values: 1.0 4.000 x 100 4.472 x 10 3.570 x 10716
Initial values: 1.1 4.400 x 10'6  4.919 x 10'¢ 3.246 x 10716
1.0% 1.00016 4.006 x 106  4.480 x 106 3.239 x 10716 6.89
2.0% 1.00000 4.019 x 106 4.496 x 10 3.238 x 10716 | 13.78
3.0% 1.00038 4.028 x 106 4.472 x 106 3.236 x 10716 | 20.68
4.0% 1.00012 4.034 x 106 4.516 x 106 3.233 x 10716 | 27.57
5.0% 1.79856 2.540 x 106 1.715 x 10 3.100 x 10716 | 34.46
6.0% 1.87854 2.356 x 106 1.445 x 106 2.976 x 10716 | 41.35

Table 4.10: Results of Lorentz Inverse Problem in the Presence of Noise

The Table 4.9 suggests that initial parameter values which are within 30% of the
true values are suitable for initial iterates, at least in the absence of noise in the
data. This range of parameter values should be compatible with reasonable a prior:
knowledge of the parameters of a real material.

The inverse problem is then attempted in the presence of noise of uniform relative
amplitude applied to the observed data in the manner described in Section 4.2 for the
Debye problem. The initial values for the parameters are perturbed by 10% from the
correct values (with one exception noted below) and the results of these simulations
are given in Table 4.10.

We notice that the quality of the results deteriorates at 5.0% noise and that 7
is the most difficult of the parameters to recover accurately. When considered as a
function of 7 only, the objective function exhibits considerable sensitivity with respect
to noise, as shown in Figure 4.18. Here, we can see that the objective function is
much less sensitive to the value of 7 even in the presence of a small amount of noise.
The minimizing values of 7 in the presence of various amounts of noise is given in

Table 4.11.
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objective function

Normalized objective function values

0.15+ b

0.1r —— 0.0% error b
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0.1 L
10 10
tau

Figure 4.18: Plot of J(q) — J(G*) versus 7

% noise | estimated 7 | residual
1.0% | 1.1291 x 1016 6.89
2.0% |6.1779 x 10717 | 13.78
3.0% |4.5353 x 1077 | 20.68
4.0% |3.6834 x 10717 | 27.54
50% |3.1432 x 10717 | 34.43
7.0% | 2.4687 x 10717 | 48.21

Table 4.11: Results of identifying 7

64
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4.5 Forward or Simulation Problem with General

Polarization Models

We begin with the differential equation (2.8) and develop a variational form of the
problem much as described in Section 4.1. The time and polarization variables are
scaled in the same fashion, but we do not apply the method of mappings to scale
the space variable. In order to model materials of various thicknesses, we allow the
computational domain to be of arbitrary size, i.e., = [0,1] for I > 0. (The right
boundary of the material domain is also not required to be z; = [ but must coincide
with one of the nodes in the spatial discretization. Hence, z = 25, Q = [zV, zl] and
Qy = Q — Q. For our examples we will always take zo = .) We allow a more general
problem by considering both the supraconductive boundary condition at z = [ or
allowing an absorbing boundary condition like the one at z = 0. Although it is not
a generally used part of these models, we also retain the possibility of instantaneous
polarization. Hence, ¢, > 1. Also, we will assume a zero initial condition for the

electric field.

Our more general weak form of the equation is

(Ho€E, ¢) + (oo E, @) + (1o P, ¢)
HE' )+ B(L0)8(0) + Bt Do) = ~(ioi(,), )

The new term is a contribution of the absorbing boundary condition at z = 1 and
the inner product has been redefined as (¢, ¢) = [l ¥(2)¢(2)dz.

The Galerkin finite element approximation proceeds as in Section 4.1. Our two
cases for the boundary condition at z = [ are implemented by either retaining or omit-
ting the function ¢ (2) from the finite dimensional space of test functions. Let N de-
note the index of the highest test function included and V¥ = span{¢y, oY, ..., o%}
be the space spanned by these functions. The supraconductive boundary is imple-
mented with N = N — 1 while the absorbing boundary condition is implemented with

N =N.
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For polarization, we use the weak form of equation (2.12). Applying the same scal-
ing as before (f = ct, P = P/ey) and using the approximation of F in equation (4.2)

we obtain the following variational equations:

N 0 N N
Z Ei(t) (e i, D) / Z éi(t + s)pids, @) + Z éi(t) (v, D)
=0 =0 =0

N
(@5, ) + D et)pig| = —10{Js, B) (4.26)
=0

2=0,l

Mz»

=0

We find the variational form of the equation by allowing ¢ = ¢; for ¢; in Vi
obtaining a system of size N + 1. For a function a(t, z) which varies in both variables,

the integral term becomes:

Z/ éi(t + s){a(s)ps, ¢;)ds

We make the following definitions:

Mj = {e¢i b5)

My = (Ia(noo(-) + 9(0,)) b, 65) + dibsl.—, (4.27)
Kij = (9, 9))
At)y = (oalt,-)gi, d;)

Note that A(t) = [A(t)];; is a time-varying matrix-valued function, while M”, M and

K are constant matrices of size N. We can now write our system as:
M”e—I—Me—I—/ Jé(t+ s)ds + Ke = f(t) (4.28)

and f(t) = —noJ,(t)é; where é; is the unit vector with 1 in the first component.

4.5.1 Galerkin Methods for the History Approximation

We choose a method for approximating the history of é(¢) which maintains the same

order of accuracy as the discretization of the rest of the problem. This is because
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the order of the accuracy of the solution is limited by the lowest order in accuracy of
each of its parts. To do this, we use a Galerkin discretization of the history variable
on a finite domain with a degree matching the degree of the discretization in the
space variable z. For all of the results presented here, we use degree one elements
for each approximation. We can limit the history variable to a finite domain because
the hysteresis models of interest to us are all fading memory models, i.e., the kernel
function « decays to zero as s — —oo. The integral over the history of the electric field
with this kernel function can be well approximated by truncating it to a sufficiently
long interval.

We consider an abstract problem with the appropriate conditions to approximate
the history. Let u(t, s) denote the solution to this problem and represent the truncated
history of é with finite duration r via wu(t,s) = é(t + s) for (¢,s) € [0,00) x [—r,0].

By its relationship to é, we see that u(t, s) satisfies,

d d
%u(t, s) = Eu(t, s) (4.29)

The appropriate initial condition is «(0,s) = 0 since é(s) = 0 for all s < 0. For
boundary conditions, we suppose that the state variable é(¢) is known at all times ¢,
and we can thus impose the boundary condition u(t,0) = é(¢). Since it is a first order
hyperbolic problem, there is a unique solution specified by u(t,s) = 0 when t < —s
and u(t,s) = é(t + s) when t > —s.

We create a Galerkin finite element approximation in the history variable s, much
as done for the space variable z in Section 4.1. Let 9 be continuous basis func-
tions defined on the interval [—r,0] with inner product (1;,4;) = [, 1i(s);(s)ds.
There are a number of choices one might make for these elements, e.g., piecewise
linear, quadratic, or higher order polynomial elements. Since our space variable ap-
proximations were made with piecewise linear elements, we chose the same type of
elements here for compatibility of order. These functions are defined on the uniform
grid 5; = —r + §7i for i = 0,..., M where 1;(5;) = 0.

The past history of é is approximated as an element of the space spanned by these
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basis functions: .

u(t, s) = uM(t,s) =D () (s). (4.30)

i=0
Recall that ¢ is a vector of size N, and so each of the u; are vectors of the same size.

Let the matrix U denote these unknowns taken together as rows:

uo(t)
v - | "
| un () |
i) @) - )
(1) @y L. M
B u1:<t> u1:<t> ) 1:<t> (4.31)
L) W) - W) ]

Storing the coefficients u; as rows in this matrix means that the operators we will
derive for the history-evolution are applied on the left side of U. This was deliberately
chosen to simplify the numerical implementation, since one of these operators needs
to be inverted, and the available linear-algebra routines work with matrices applied
on the left. Matrices representing operators in the space variable will be applied to

the right side of U or to the left side of UL

4.5.2 Approximating the history of é(t)

We consider two different methods for finding approximate solutions to equation (4.29)
which differ in their variational form of the expression and how the boundary con-
dition is imposed. The first method is to use a variational form which implies no
boundary conditions, consider its resulting finite dimensional approximation, and
then use the approximate boundary condition to eliminate an equation and unknown
from the system. We will see that this approach has a particularly simple implemen-

tation. The second is to write a variational form of the equation which imposes the
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boundary condition in a weak sense. Care must be taken in this approach not to

introduce a spurious boundary condition at the other boundary s = —r.

Imposing u(t,0) = é(t) exactly:

Consider the trivial variational form:

(ur, ¥) = (us, ) (4.32)

No boundary conditions are implied in a variational sense by this equation, since no
integration by parts is performed in order to relate it to the original PDE (4.29). We
create a finite-dimensional version by restricting 1) to members of the basis set 1); in
equation (4.32) and using the approximation (4.30) The following system of equations
results:

MU =WU (4.33)

where M;; = (1;,;) and Wi; = (4, 1;).

This system is determined in the sense that the derivative is well-defined, but
it is not clear which PDE it approximates, since it has nothing to say about the
boundary condition necessary in a well-posed continuous problem. We consider the
system of equations (4.33) too large by one equation and one unknown, which we
eliminate with the auxiliary condition arising from the boundary data. Using the

same approximation (4.30) for u(t, s) we find,

> ult)yil0) = é(0). (4.34)

We assume that 1,,(0) # 0 (which is the case for the piecewise linear spline approx-

imations used here) and solve for the coefficient uy/(t). We obtain

1 . M-1
Wm:@@G@—gwww) (4.35)

For the elements we use in the numerical simulations, this reduces to uy(t) = é(t)
because 1;(0) = dy;.
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We seek a simple way of implementing the removal of the coefficient u,,(¢) from the
system of equations (4.33). We can use Gaussian row-reduction to eliminate uy, from
the left-hand side, and then substitute the expression (4.35) wherever uy,(t) appears
on the right. This produces a smaller system of the form: MU = WU + vé(t), where
v is a vector of coefficients.

We avoid this process by noting that the same process of Gaussian operations can
be applied just as well to both sides of equation (4.33) after performing the matrix-
vector multiplication, as they can to the matrix system itself. This allows us to
substitute the value of uy(t) in equation (4.35) before the elimination operations.This
yields the following procedure for evaluating the derivative of the reduced system

(which is missing up(t)).
1. Compute the correct boundary value of uy(t) from (4.35)

2. Compute U from equation (4.33) using the entire state u;,i = 1,..., M.

This also produces a value for 7, (t) which we ignore as the evolution of this term is
determined by the boundary condition.

Another possible advantage of this method is that the boundary condition is
satisfied exactly, instead of in a weak sense. The effects of this on the quality of the
rest of the approximation are not known. Since the above method departs from the
standard finite-element approach, we can no longer say that our approximation of u
is the least-squares projection into the finite-dimensional subspace. For this reason
we consider another approximation scheme which imposes the boundary condition as

part of the weak form.

Imposing the Condition u(t,0) = é(t) weakly:

As the variational formulation of the problem we choose,

(ur, ) = —(u, ) = (=r)u(=r) + )y (0) (4.36)
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This implies that u; = us and u(0) = é(0) under the standard variational arguments.
Notice that the term —(—r)u(—r) cancels a term which would otherwise yield the
condition u(—7) = 0 after integration by parts.

In the usual manner, we find a system of differential equations from the variational
form (4.36).

g’di(t)(dh‘, V) = — gui(txd}i, bj)
- ; w; ()i (—=1)Yi(—=r) + e(t);(0). (4.37)

We define the matrices M, W by My; = (1;,4;) and Wij = (i, 0;) + i (—r)b; (=),

then express the system of differential equations (4.37) in matrix form as
MU(t) = =WU(t) + We(t)T (4.38)

where ¥(0) = (¢9(0),91(0),...,%n(0))". We note that the M + 1 rows of U are
vector valued functions in R**N+1. This differs from the convention of treating e and
¢ as column vectors, hence, the appearance of ¢7 in equation (4.38).

The matrix equation (4.38) is appropriate for implementation, however we seek

to simplify the implementation further. Through integration by parts we find

Wi = (@i,15) + (=) (—7)
= — (i, ) + ity (=) (1)
= —Wi; + ¥i(0)1;(0)
= Wy +0. 9T

where W;; = <1,Z}i,7,[1j> and equation (4.38) becomes:

MU = WU —90TU + e(t)T
— WU + Tet)T

A

where W;; = Wi; — ¢;(0)¢;(0). This equation can also be written as: MU =
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WU + ¥(e(t)T — UTU). Here we can more clearly see the presence of the bound-
ary condition in the weak form. The boundary condition can itself be expressed as
e(t)’ =M ¢ (0)y; = 9TU.

Note that the time varying terms in equation (4.38) are very few provided that
for only a few i, 1;(0) # 0. For the standard first-order splines we use, 1;(0) = &

so only one element is non-zero.

4.5.3 Implementing the Hysteresis Term

We express the integral term in equation (4.28) in terms of the Galerkin approxima-
tion. We have
0

A(s)u(t,s)'ds

-Tr

o

Q

H:
S
+
=
2
— —

A(s)uM(t, s)Tds

T

= /OA Z]T J;(s)ds
= 3 [ Al (e)ds w0
= %Aju]r(t) (4.39)

where A7 = [° A(s)v;(s)ds. Recall that A(s) is a matrix function, and so the A* are

matrices of size N + 1 x N + 1, where the ij element of A* is:

A% = [ (Als, )0, 05)x(5)ds. (4.40)

This gives us the complete discretization of the history terms in the second order

system of equations (4.28), which we now can write as:

M’“e+Me+ZAk + Ke = f(t)

k=0

MU +WU = el
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where f(t) = —noJ,(t)é; and ¥ = (161(0),42(0), . .., ¥a(0))”. We convert this system
to first order by letting x = e, y = é.

T o=y
M
My = —My—Kz— Y ARl + f(t) (4.41)
k=0
MU = —WU + Iy7. (4.42)

The state variables of the system we need to solve are the length N +1 vectors .y
and the M + 1 x N + 1 matrix U. The matrices A*, K, M, and M are as defined in
equations (4.27). The matrices M and W and the vector ¥ depend only on the basis
functions chosen for the history approximation, while M", M and the A*s depend on

physical parameters we will want to estimate.

4.5.4 Specific Implementation: Constant Material Parame-
ters
We consider the special case of materials which are homogeneous throughout the

domain €. Functions which describe dielectric properties of these materials are con-

stants modulated by the indicator function of the domain (2. These are given by

o(z) = olg(2)

() = 1+Ia()(e —1) (4.43)
a(s,z) = a(s)la(z)

9(0,2) = gola(z)

We have introduced new parameters o and gq for the conductivity and zero value of
g, and the kernel function af(s).

As in Section (4.1), we further assume that the boundaries of the material coincide
with the domains which define the test functions. This way, the material parameters

are constant over each domain over which an integral is evaluated. The matrices



Chapter 4. Computational Methods and Results 74

in (4.27) become

M™ = M+ (e — 1)Mq
M = (mo + go)Mo + B
A(s) = als)Mg

where

M, = (¢i=1,0j-1)
Mqy; = (la¢i-1,¢j-1) and
Bij = ¢i-1(0)¢;-1(0) + ¢i=1(1)¢;-1(1),

representing the contributions of the boundary conditions. For the case of a supracon-
dicting boundary at z = 1 then B;; = ¢;_1(0)¢,;_1(0) and the space of test functions
is reduced to V¥ = span{¢{’,...,¢¥_,}.

representing the contributions of the boundary conditions. For the case of a
supracondicting boundary at z = 1 then B;; = ¢;_1(0)¢,_1(0) and the space of test
functions is reduced to VA = span{¢¥,...,o¥_;}.

We use equation (4.40) to find the specific form of the matrices A*:

Al = [ tals, o0 05 uls)ds

N /_OT a(s) Maijvi(s)ds
= Mo, /io‘(sﬁ/fk(s)ds
So
AF = Mqay,
e fET o(s)yx(s)ds. Letting o = (aw, .., aM)T we can express the approxi-

mation of the hysteresis approximation in equation (4.39) as

/0 A(s)é(t +s)ds = /0 A(s)u(t, s)"ds

- -r
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R

M=
ka
2

el

=0
M
= Z Mga]u]
7=0
= MoUTa
The full system of equations (4.41) is now:
T =y
(M + Mg(er —1))§ = —((mo + go)Ma + B)y — Kz — MoU o + f(t)
MU = —WU +y07 (4.44)

where the last equation may still be replaced with:

MU = WU + 0yT.

4.6 Results of Simulations with the General Model

4.6.1 Hysteresis Representation of Debye Model

We measure the accuracy of solutions to the general polarization model by comparing
them with those obtained from the differential Debye model of Section 4.1. The
correct function to be used in the general polarization model to represent a Debye
material is found from the variation of constants solution to the differential equation.

In the scaled version of the equations we have:
P+ ¢P = ¢\E.
Use of an integrating factor yields:

P(t) = [ ot~ &) B(E)de

where g(s) = eg\e . From this we calculate:

0 . .

P(t) = / G(—s)E(t + s)ds + g(0)E(1). (4.45)

—t
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r M As Max Difference % Difference execution time
002 5 4.0x1073 0.4038 1.04 36.08
002 7 286x1073 0.5705 1.47 40.27
0.02 10 2.0x1073 0.6824 1.76 46.09
0.02 20 1.0x 1073 0.6662 1.73 68.29
0.03 7 428x1073 0.4011 1.04 40.13
0.03 10 3.0x10°3 0.1119 0.29 45.79
0.03 15 20x10°? 0.0149 3.84 x 1072 56.3
0.03 30 1.0x10°3 0.0120 3.10 x 1072 91.13
0.04 10 4.0x 1073 0.3101 0.801 45.92
0.04 13 3.08x1073 0.1117 0.289 51.93
0.04 20 2.0x1073 0.0223 5.94 x 1072 67.75
0.04 40 1.0x 1073 0.0016 4.24 x 1073 113.44

Table 4.12: Comparison of General and Differential Debye Simulations

The function o which appears in the definitions (4.43) is a(s) = —eg\%e** and the
remaining parameters are: €, = €, gop = €g\.

We compute the solution to a test problem using both the differential and hys-
teresis Debye polarization models. The results are summarized in Table 4.6.1. The
physical parameters are ¢ = 0.0, e, = 5.5,€; = 80.1 and 7 = 8.1 x 107!2 and the
simulation is run to t = 1.67 x 107Y. The boundaries of the material medium are
z1 = 0.005 and zp = 0.1. The discretization in space is a first-order finite element
approximation with N = 100 in for both the differential and hysteresis models. The
hysteresis simulations also use a first-order finite element approximation in the his-
tory variable. That is, the functions ¢; and ; are both piecewise linear functions
defined on discretizations of the intervals z € [0,1] and s € [—r, 0] respectively.

The maximum difference is computed as ||eg — e/ and the percent difference is
llea — enlloo/|€al|co, Where e4 and e}, are the solutions obtained from the differential
and hysteresis models respectively. The last column is an average value of the actual
computer time in seconds taken to solve the test problem. These figures should be

contrasted with the 6.65 seconds time for the differential Debye simulation using the
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same discretization in the space variable. We see that agreement between the two
methods is very good when sufficiently accurate discretizations of the history variable
are used. This requires that a sufficiently long history be retained in the simulation
(as measured by r) and a sufficiently fine discretization of this interval (measured by
As =r/M). The results show that a history duration of at least » = 0.03 (about 10
ns, in the unscaled time variable) is necessary for results with small relative error.

Comparing results from the table, we see that similar results are obtained by
M = 10,7 = 0.03 and M = 13, = 0.04 while the computation with M = 13
takes about 14% longer to execute. Although more accurate results are obtained for
higher values of M with r = 0.04 than with » = 0.03, these are only incremental
improvements in the quality of the simulation. Since we are interested in the inverse
problem which requires repeated simulations of the system, the time of execution is
a primary concern.

We show graphically in Figure 4.19 the close fit of results generated with the two
formulations (i.e., differential Debye versus hysteretic Debye polarization models).
This plot is for M = 4 and r = 0.03 in the hysteresis formulation. For more accurate
simulations the graphs are indistinguishable in the plot. Figure 4.20 exhibits a case
where an insufficiently refined discretization of the history variable leads to a very

poor approximation. This result was computed with M = 3 and r = 0.03.

4.6.2 Hysteresis Representation of Lorentz Model

The representation of the Lorentz model of polarization is plagued by computational
difficulties which make it impractical for simulations.

The plot of the hysteresis kernel using the parameter values used in the inverse
problem of Section 4.4 is given in Figure 4.21. This function is the derivative of
the impulse response function which appears in the variation of constants solution
to the differential equation. Because of the oscillatory nature of the function, a
much finer approximation of the history variable is required, making the size of the

resulting system of equations prohibitively large. For example, the plot of the kernel
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Differential and Hysteresis Debye Models
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Figure 4.19: Results from Differential and Hysteresis Debye Models
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2 T

-2 I I |
1.5

1
history (s) x 107

Figure 4.21: Hysteresis kernel for Lorentz model with 7 = 3.57 x 10716

function in Figure 4.21 suggests that a history duration of r = 2 x 107' is necessary
before the kernel function drops to a level where it can be neglected. This includes
twelve complete oscillations. To approximate this function accurately would require
on the order of 36 basis elements in the Galerkin discretization of the history variable,
allowing for a meager three elements per cycle.

Furthermore, stability requirements limit the discretization in time of the entire
system to being no larger than the discretization of the history variable. This arises
from the discretization of the evolution equation of u in equation (4.29). The resulting
discretizations in equations (4.33) and (4.38) are subject to a stability condition which
limits the size of the discretization in time. Since we do not want the propagation
speed of the numerical scheme (As/At) to be faster than the actual propagation
speed of the solutions (1, in the scaled variables), the time step can be no larger
than the discretization used in the history variable. In the example considered here,

the resulting discretization in the history variable would be approximately As =
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5.6 x 10717, suggesting a time step of similar size. (The similar differential problem
in Section 4.3 required an even smaller step size of 1.0 x 1017 for an accurate result.)
A simulation of duration 6.67 x 10714 (as used in the inverse problem of Section 4.4)
would require about 1200 steps. Because of the large number of basis elements in the

history variable, the resulting computation is prohibitively expensive.

4.7 Inverse or Estimation Problem with General

Polarization Model

Having successfully duplicated the quantitative behavior of the Debye model of po-
larization with a hysteretic polarization model, we turn to using this method of sim-
ulation in an inverse problem. Different inverse problems can be formulated in this
way depending on the way in which the hysteresis kernel depends on the set of pa-
rameters being optimized. Omne option is to express the kernel as a function of the
same set of parameters which appear in the differential equation, o, €4, €5, and 7 and
hence in the variation of constants solution. For the Debye differential equation, this
function was computed in Section 4.6.1 as g(s) = ezAe ** and the kernel function is
a(s) = —eg\%e*. As noted in Section 4.2 optimizing over the parameter A\ = 1/c7
instead of 7 in the differential Debye polarization model improved the performance
of the optimization problem.

As an alternative to representing the Debye kernel as a function of the Debye
physical parameters, we can attempt to reconstruct it directly. From equation (2.12)
we see that recovering the hysteresis function g(¢) can only be done through identifying
a suitable finite dimensional approximation of its derivative a, which appears in the
integral term, and its value at zero, which appears in the damping term. Since we’re
interested in the case where E(0,z) = 0, the term x is zero. Furthermore, in this
case, the only appearances of the conductivity o and the parameter g(0) are both in
the damping term. Therefore we do not expect to be able to recover these parameters

separately. For the remainder of this problem, we consider o = 0 and let g(0) represent
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whatever actual conductivity the material may have.

To reconstruct the hysteresis kernel a we attempt to find optimal values for the
coefficients in a Galerkin finite element approximation of this function. This Galerkin
approximation is performed over a discretization of the history exactly as described
in Section 4.5.1. To simplify the computations, the same basis elements are used
to approximate the kernel function for the purpose of identification as are used in
the simulation. Hence, the coefficients we seek to identify are directly related to the
ones used in the forward simulation. Using the notation established in Section 4.5.1,
M is the mass matrix arising from pair-wise inner products of the basis functions:
M;; = (¥i_1,%j_1). The values which appear in the forward simulation are o =
I° a(s)¢y(s)ds and the coefficients of the Galerkin approximation of a are given by
h = M™a, where the vector a is a = {ap, ay, - .., apr) and h = (ho, hy, - .., har)

We adopt a standard test problem for comparing the relative ease of reconstructing
the hysteresis function through the Debye physical parameters and through Galerkin
coefficients. The true values for the physical parameters are 0 = 0.0, e, = 5.5,
€, = 80.1 and 7 = 8.1 x 107'? (Again, these are the typical values for water). The
data is gathered from a forward simulation of the problem using the differential Debye
polarization model and is depicted graphically in Figure 4.22.

We attempt two inverse problems over different sets of parameters using this test
problem. These different sets of parameters arise from the different ways of repre-
senting the Debye kernel function, either as a function of the Debye parameters or
through the coefficients of a Galerkin approximation. Both of these inverse problems
use the result of a forward simulation from the differential Debye model to provide the
data. Since no noise is added, we expect to be able to reproduce the parameter values
with a high degree of accuracy, depending on the precision of the hysteresis approxi-
mation. We do not attempt to identify the parameters o and €,,. In Section 4.2 the
low sensitivity of the objective function to these parameters was established. Instead,
each of these parameters have their values fixed at the value used in generating the

data.



Chapter 4. Computational Methods and Results 82

Data for inverse problem
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Figure 4.22: Data for Debye Test Problem

The results of fitting the hysteresis Debye model to data generated by the dif-
ferential Debye model are summarized in Table 4.13. All of these attempts used
r = 0.03 for the duration of the history approximation. The initial values for the two
parameters were 7y = 7.7142 x 1072, €9 = 83.83. These results demonstrate that a
sufficiently accurate hysteresis implementation of the Debye model yields reasonable
estimates for the parameter values in an inverse problem.

The identification of the Galerkin coefficients proved to be considerably more
difficult than identification of the Debye model parameters. The “true” values for
the parameters are found by taking the vector of coefficients a which are computed
to perform the forward simulation and computing the coefficients of the Galerkin
approximation h. These true values are then perturbed by 10% to generate the initial
values used in the optimization. As summarized in Table 4.14, attempts to identify all
of the coefficients h and the value of g(0) generally failed to converge in a reasonable

number of iterations. The results for M = 4 and M = 6 were taken before the
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M estimated e, estimated T residual
True values: 80.100 8.1000 x 1012
Initial values: 83.8300 7.7142 x 10712

4 81.3481 8.2190 x 10712 1.14808

5 79.7209 8.8766 x 10712 0.37468

6 80.4458 7.9891 x 1012 0.30911

7 79.9598 8.3541 x 10712 0.13821

8 80.2243 8.0389 x 10712 0.11429

9 80.0418 8.1978 x 10712 5.83645 x 1072

10 80.1558 8.0660 x 10712 5.19723 x 1072

Table 4.13: Results of estimating hysteresis Debye model from differential Debye
data

program terminated and indicated convergence. (At the time that the values were
taken, both programs had been running continuously for at least nine days.) We
report the values of the two parameters g(0) and the first coefficient of the Galerkin
approximation of the kernel hqy. Since the value hy depends on the discretization, its
true and initial value both vary with M. These values are summarized in Table 4.15.
This result strongly suggests that the problem is over parameterized. To alleviate
this problem, we note that hq is considerably larger than the other coefficients, owing
to the decaying exponential form of the kernel function. This parameter, along with
the value of ¢g(0) are likely to have the most influence over the objective function,
with the remaining coefficients playing minor roles. We attempt to identify just these
two most significant parameters while holding the others fixed at their true values.
This smaller optimization problem also proved to be very difficult, although ac-
ceptable results were eventually obtained, as indicated by the results in Table 4.16.
We see that this problem required a much larger number of iterations to attain conver-
gence than the two parameter Debye estimation problem summarized in Table 4.13.
One possible cause of the very slow convergence is suggested by the objective function.
Figure 4.23 is a plot of the logarithm of the objective function over a narrow (5%)

range of reach of these parameters. We see that the minimizer lies at the bottom of
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M ho g(0) residual Iterations
True values: — 2264.20
Initial values: — 2490.63

4* -683759 2336.54 2.159 x 107! 900

5 -765083 2365.97 1.645 x 1072 188

6* -809484 2349.39 1.323 x 107! 829

Table 4.14: Results from estimating all coefficients of kernel.

M ‘ True hg Initial Ag
4 | -640889 -704978
5 | -706575  -T77233
6 | -753628 -828991

Table 4.15: True and initial values of hy for various M

M ho 9(0) residual iterations
True Values: — 2264.20
Initial Values: — 2490.63

4 -640888 2264.20 1.15539 x 107° 83

5 -706574 2264.20 1.63708 x 107° 80

6 -753625 2264.20 1.98944 x 107° 95

Table 4.16: Results of estimating g(0) and hy

84
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a narrow trench. This is likely caused by the two coefficients g and hy being nearly
interdependent in their influence on the solution. On one side of the trench we see
that the values of the objective function rise slowly, while on the other they increase

exponentially fast.

Figure 4.23: log J(g(0), hy) for M =4



Chapter 5

Object-Oriented Design and

Programming for Scientific Applications

5.1 Introduction

The implementation of computer programs to solve the numerical problems arising in
the last chapter have been made part of a broader investigation into the applications
of object-oriented programming to scientific computing. The work presented in the
next two chapters is guided by two additional objectives; To develop a re-usable
library of code which we hope will find application in other research projects, and to
investigate the issues of code design which surround the application of object-oriented
programming to scientific problems.

C++ is an extension of the widely used programming language C into an object
oriented language. We chose C++ for this investigation because of increasing in-
terest in it for scientific computing (see, for example [LAP++, TNT, MTL, Diff]).
Furthermore, compilers for C+-+ are readily available on a variety of platforms.

Our main objective in this project is to implement numerical solutions to the
forward and inverse problems described in Chapter 4. Rather than write code which
solves these problems exclusively, we concurrently develop code to implement parts

of the problem which can also be applied elsewhere. A collection of routines which is
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designed for repeated application to various problems is known as a software library,
or just as a library. Developing our library concurrently with its application to these
research problems allows us to use these problems as a test case for evaluating the
efficiency and usefulness of the library.

We begin by declaring the criteria by which a library of code for scientific pro-
gramming will be measured. A successful library of code for scientific programming

must, to some degree, meet the following three goals:

1. Re-use: The library should facilitate the re-use of code. Functions in the
library should be written to uniformly apply to a wide range of application.
Where possible, the library should also re-use existing code, by providing an
interface to already existing and tested routines. When it does so, the library

should make such code easier to use.

2. Clarity: The library should be conceptually clear and allow the programmer
to think on a familiar level of abstraction. Objects in the library should corre-
spond to parts of mathematical problems. The programmer can then work with
these more familiar objects instead of the constructs native to the programming

language.

3. Efficiency: The library should be optimized wherever possible to perform tasks

in a minimum of time and using a minimum of memory.

5.1.1 Procedural Programming

We briefly describe how code is organized in non-object-oriented languages. This
will highlight the new features of object-oriented programming and its advantages for
scientific computing.

Procedural programming is the division of large programming jobs into parts
which are implemented as functions or subroutines. These smaller modules of code

work together by operating on a common set of data which they receive as arguments.
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In C these modules are implemented as functions while Fortran uses subroutines for
this purpose. When speaking generally, we will refer to these modules of code as
procedures.

Procedures are usually written to be generic, in the sense of performing tasks
which can be useful in a variety of situations and for a variety of data. For example,
procedures for factorizing a matrix or sorting an array of data. Procedures can
also be written with more specific goals, such as constructing matrices which arise
in specific numerical applications. An application program generally is written to
compute solutions to a particular problem or class of problems by calling various
procedures. Procedures which are written to act generically are the basis of re-usable

libraries of code.

5.1.2 The Dual Role of Functions

Throughout various computing languages, the term function refers to a module of code
which accepts arguments and has a separate mechanism for returning information to
the calling program. In Fortran, functions are distinct from subroutines which do not
return data (except by changing the values of the arguments). In C, and therefore
in C++, functions are fundamental to the implementation of procedures. Even the
main body of a C or C++ program is a special function with the name main. We
will see how classes are used to further organize code in C++, but the elementary
structural unit of code is still the function.

In scientific programming applications, program functions are also used to repre-
sent mathematical functions. (This is the primary use of the function construct in
the Fortran language, since subroutines are used for writing procedures.) We will see
in a later section how this implementation of mathematical functions is sometimes

too restrictive and how this can be remedied using objects in C++.
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5.1.3 Pointers and References

The pointer is familiar to C programmers as a special data type for holding the address
of another data type. For each type in C, there is a corresponding pointer type which
can store its address. The name of the pointer type is the same as the name of the type,
suffixed with an asterisk, e.g., int*, double*, char*. Pointers are indispensable
when dealing with arrays of dynamically allocated memory (Section 5.1.4) and in C
they are the only method of passing an argument to a function by reference and not
by value. Pointers can also be defined which point to functions of a certain type,
where the type of a function is determined by the type and number of its arguments
and return argument. Pointers require a special syntax for accessing the elements
they refer to, called de-referencing the pointer, and is also done with the asterisk.
If data_p is a pointer of type double then *data_p is the double precision number
stored in that memory location. If the pointer points to the beginning of a block of
values, then the other memory positions can be accessed through the [] notation. For
example data p[10] would point to the 11th double precision number in the block
of memory pointed to by data p. (The first number has index 0). The compiler
accounts for the different sizes of the various data types when using this notation.
C++ also includes another type which can be thought of as an intermediate be-
tween ordinary variables and pointers. A reference provides another way of accessing
a variable, but uses the same syntax as a regular variable. Reference types are indi-
cated by an ampersand after the type name, e.g., int&, double&, char&.
References are the method of choice when passing arguments to a function which
we do not wish to be copied. (More on this is in Section 5.3.4). When the argument
type in the function is a reference, instead of an ordinary type, the function receives
the address of the argument and can access it through the argument variable. For

example

void myFunction(double& value){
value = value * 2.0;

}



Chapter 5. Object-Oriented Design and Programming for Scientific Applications 90

This function accepts a double& argument. When it is called, the argument is
not copied. Instead the function contains a reference (called value) to the variable
in the calling code. After execution of the function, the value of the argument passed
to myFunc will be doubled.

This use of references is even more important when the arguments are objects

(Section 5.2.1) for which the copying operation is expensive.

5.1.4 Dynamic Memory Allocation

C++ inherits from C the ability to dynamically allocate memory through the com-
puter’s operating system. This is an important advantage over older languages like
Fortran77 in which arrays all have fixed sizes. C++ programs can request more mem-
ory from the operating system and return it when done. This makes variable sized
arrays possible, giving programs greater flexibility without having to allocate extra
memory.

When a block of memory is granted this way, it is kept track of through a pointer,
which stores its location in the memory of the computer which stores the address of
the first element in the block. The actual location of the memory is rarely of interest
to the programmer, so the pointer variable is used indirectly to refer to access the
contents of the block. The pointer is also used when the block of memory is returned
to the operating system (de-allocated) or passed to a function.

Using dynamically allocated memory in C++ creates additional responsibilities.
Memory which is no longer used by a program must be returned to the operating
system, or it will remain unavailable. The systematic failure to de-allocate memory
is known as a memory leak and can seriously hamper the performance of a program
if free memory becomes scarce. Great care must be taken to ensure that the pointers
which keep track of dynamically allocated memory are not lost or have their values
changed. (Other object-oriented languages such as Java perform garbage collection
which means that data is automatically reclaimed by the system when it is no longer

in use.)
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Like ordinary arrays in C, dynamically allocated arrays do not support range
checking. This means it is possible to use a pointer to refer to memory addresses out-
side its block of memory, possibly into memory being used elsewhere in the program,
by other programs, or by the operating system itself. This can result in the program
behaving incorrectly, terminating with an error, or even “crashing” the computer if
the operating system is affected. We will see in a later section how the use of objects

can automate range checking for arrays to prevent these errors.

5.1.5 Operator Overloading

An operator or function is said to be overloaded when it has multiple definitions
which apply to different arguments. This is familiar to users of Fortran90 (and some
versions of Fortran77) in which functions like sin are defined to work with numbers
of various precisions. The elementary mathematical operators such as +,-,/,* are
all overloaded to work with the various built-in mathematical types. It is the job
of the compiler to deduce which version of the function or operator is intended and
apply it correctly.

One difference between C++ and Fortran is that C++ supports defining over-
loaded functions to work with user defined types. (Note that the various versions of
an overloaded function are independent of each other and do not necessarily perform
similar operations on their arguments. Creating overloaded functions like this, how-
ever, would surely be considered bad design.) The versions of an overloaded function
or operator can differ in the type or in the number of their arguments. This is nec-
essary so the compiler can tell which version of the function is intended. It is not

possible to overload a function or operator with versions that only differ in the return

type.
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5.1.6 Inline Functions

Inlining a function is another way that the performance of programs can be enhanced
in C+4. When a function is inlined by the compiler, the body of the function is
substituted into other code where the function is called. This avoids the overhead
associated with function calls. Tt does, however, increase the size of the resulting code
since multiple copies of the function are made. Consequently, inlining is best done
with small functions only. Although the programmer can declare that a function be

compiled inline, whether it actually will be is determined by the compiler.

5.2 Object Oriented Language Features

We begin with a brief overview of a few object-oriented programming features to il-
lustrate important features of the code which follows. We discuss these in the context
of programming with C++, although they are shared by other object oriented lan-
guages. Special attention will be paid to the difference between procedural languages
such as Fortran and C and the resulting differences in how code is designed.

Since this guide is far from exhaustive, readers interested in further details are
encouraged to consult the references listed in the bibliography. The definitive guide is
The C++ Programming Language by Bjarne Stroustrup [Str|, who created the C++
language. This book contains a wealth of information on the language itself and
the practice of object-oriented programming. Introductions can be found in [Oual
which is a general overview, and [Lad, Buz| which focus on applications to scientific

computing.

5.2.1 Classes and Objects

A class is a module of code containing both data and functions which act on the
data. This distinguishes it from the struct in C, which is a container for multiple

pieces of data. (In C++, the struct is virtually identical to the class) An extensive
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library of pre-defined classes is available for use with most C++ compilers. Additional
classes are created by programmers to accomplish specific goals or to represent specific
concepts.

Each class in C++ has a distinct type. These are distinct identifiers for each class,
like the primitive data types which are built-in to the language: (float, double,
int, char ...). This means that different distinct instances of the type can be defined
inside a program, just as multiple integer variables are distinct instances of the int

type. An instance of a class is called an object.

Data Members

The data which are part of a class are called its data members. These can be prim-
itive types or objects of abstract classes. The functions which belong to a class are
called its member functions. These functions accept arguments like other non-member
functions, but can also access the data members of the class.

Inside an object, the member data and functions of an object can be accessed us-
ing only their name. Outside the object they are accessed through the notation,
object.DataMember or object.MemberFunc(arguments) for a function. Where
object is the name of the object, DataMember is the name of a data member and
MemberFunc the name of a member function. We will see in the next section how to
control which members can be accessed outside of the class they belong to.

When referring to members as part of a class and not as members of a particular
object, we adopt the C+-+ syntax used in the class definition. This is class::
DataMember or return-type class::MemberFunc(argument-types). When the
class name or the return type is clear from context, they can be omitted from the
definition.

For more information on the syntax of defining classes and accessing members,

see [Str, Chapter 10| and [Oua, Chapter 13].
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Access Control

When the various parts of a class are defined, they are assigned a level of protection
which determines where and how they can be accessed by other code. Both data and
function members of a class can be declared public, which allows access both inside
and outside the object they belong to. Members which are declared private can only
be accessed by the member functions of that class or by special non-member functions
which are declared to be friends of the class. (We will not examine friend functions
in detail here; For more information see, [Str, p278].) A private data member can be
accessed inside a member function of the class (and by friend functions), but nowhere
else. A private member function can only be called by other member functions of
the class (or by friends of the class). A third level of access, protected, lies between
private and public and is relevant to classes related through inheritance, discussed in
section (5.2.3).

A key part of object-oriented design is the use of private data members to selec-
tively hide data from the other parts of the code. This is known as data encapsulation
and its usefulness will be discussed below in the section on object-oriented program-

ming.

5.2.2 Data Encapsulation and Interfaces

The practice of making data private inside an object is known as data encapsulation
(or data hiding) and is used to limit the ways the contents of an object can be
manipulated. For example, data which is necessary for the functioning of the object
but not of interest to the user is often made private inside a class, where it is available
to member functions that need it. The class then has the responsibility of keeping
this information accurate. This can be guaranteed, since only the class itself has
access to this data. In a procedural programming language, where there is no way to
encapsulate data in an object implementing functions, the user of the code is often

responsible for keeping track of this data and passing it to procedures as another
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argument.

Consider for example a class Matrix which contains a dynamically-sized array of
double precision numbers for holding its contents, and a pair of integers representing
its dimensions. For consistency, the product of the dimensions should be equal to the
size of the array. If the user wishes to resize the matrix, both the appropriate size
value and the size of the array must be changed together. This is enforced by making
the data and the size information private members of the class and providing a resize
member function which implements the desired action. Other member functions are
then provided for access to the data.

Encapsulation can be used to design classes which are easy to use. Functions
written to use the Matrix class do not need to have separate arguments for accepting
the data and the dimensions of the matrix separately, since these are bound together
in a single object. The function can then use the same interface as the user for getting
the necessary information from the class.

The publicly accessible part of a class is called the class’ interface. This is the
part of the class which is subject to manipulation by its clients, and an important
part of class design is creating an interface which is flexible and easy to use.

Interfaces are even more important when data encapsulation is used to restrict the
ways an object can be used. For example, data which is made private because it should
not be freely manipulated may be needed outside the class. In this situation, public
member functions are provided whose job it is to return the values of parameters
which are private inside a class. These member functions are the means by which all
other code can learn information about the class.

For reasons discussed above, the size information was made private inside the
Matrix class. Since code which uses matrices will need to know this information,
the interface of the class includes the member function int get_size(int) which

returns the values of each dimension, depending on the argument.
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5.2.3 Inheritance

Through inheritance new classes are defined by building on an already existing class.
This new class is said to be derived from its base class. This is useful when the new
class represents a specialization of the idea represented in the existing class. The
derived class then extends or replaces the functionality of the base class as necessary.

For example, a vector can be thought of as a special kind of matrix where at least
one of the two dimensions is equal to one, and whose elements can be referenced with
a single index. To implement this relationship, a Vector class could be derived from
our already existing Matrix class. The requirement that a dimension be equal to
one would be enforced within the Vector class which would also implement accessing
data through a single index. The remaining functionality and internal code would be
inherited from the matrix class. The Matrix/Vector library described in Section 6.1
uses this implementation and we will expand further on this example in this chapter.

Inheritance is useful because it reduces code duplication. It is also one of two
ways to create generic functions. C++ supports treating an object of a derived class
as an object of its parent class under certain circumstances. For example, a function
written to work with class Matrix could also accept a Vector object as its argument.
This prevents the duplication of even more code by re-using the matrix version of the
function. Note that this is different from operator overloading where different versions
of a function with the same name exist for different argument types. In the case of a
derived class, the object is literally “sliced” back to a base class representation and

the same function is called.

5.3 C++ Terminology and Syntax

To clarify the following discussions, we define more C++ terminology and give some

examples of correct syntax.
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5.3.1 Syntax

C++ is a free-form language, which means that the programmer has great flexibility
in the exact layout of the code and the layout is generally designed to enhance the
readability of the code. A semi-colon (;) is used to terminate each statement and
groups of statements are made with brackets {}. Unlike Fortran77, commands which
are declarations of variables do not need to appear before the executable statements.
They are allowed anywhere within any block of code.

Each program in C++ must contain one function called main which contains the
main body of the code. The return type and argument types of main can depend
on the compiler, although the arguments main(int argc, char **xargv) are tra-
ditionally used for the processing of command line arguments which are passed to

main.

5.3.2 Declarations and Definitions

To create large programs is it often convenient to separate the code into multiple files
which store smaller parts of the whole. Since a compiler works only on one file at
a time, there must be a way for the compiler to know essential information about
classes and functions which have been, or will be defined in other files. To do this,
C++ requires that classes and functions have a declaration and a definition.

The definition of a function or class is its complete specification. For functions
this is the function’s name, its return type, the names and types of its arguments
and the statements which make up the function enclosed in curly brackets: { }. A
declaration of the same function includes just enough information so that the compiler
can check to make sure it is being called properly by other code. This requires just
the name, return type and types of the arguments. The argument names do not need
to be specified. This information about a function is also known as its prototype.

For example, double square(double); is a declaration of a function called

square which accepts a single double precision number as its argument and returns
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a double precision result. The complete definition might look like:

double square(double arg){
return argxarg,

}

A function must be defined exactly once in a program, and declared in every file
in which it is used. These responsibilities are often split up into different files. The
declaration of a function or group of functions is stored in a header file. On UNIX
systems, these often end in the extension .hh. The definitions of these functions are
stored in another file with the same name and the extension .cc. If a file contains a
single function or class, it is customary to make the name of the file the same as the
function or class it contains.

Each file of code which uses a function must contain the declaration of that
function so the compiler can verify that it is used correctly. This is easily accom-
plished through the pre-compiler directive #include "filename" which inserts the
contents of filename at the point where #include appears. For example, #include
"square.hh" would include the header file of the square function. Pre-complier di-
rectives are processed automatically before the compiler begins work on the code.

Classes are declared and defined in much the same way functions are. The decla-
ration contains the name of the class, all of its data members and declarations for all
of its member functions. The full definition of the class builds on the declaration by
providing definitions for each of the member functions. For this reason, the .cc file
containing the class definition begins with #include to include its own declaration.
Short member functions can also be given full definitions inside the declaration of the
function. (On many compilers, this results in the member function being compiled
as an inline function.)

For example, a class might be declared:

class widget {

private:
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int part_number;

public:
int get_number(void);
void set_number(int);

}

Class widget contains a single integer which is private and has two member functions
which are public. This is just a declaration of the class because the member functions
are only declared and not defined. The above would likely be stored in a header file
called widget.hh. The corresponding .cc file might contain:

#include "widget.hh"
int widget::get_number(void){return part_number;}
void widget::set_number(int n){part_number = n;}

Note how much of the class information is included from the header file, so it is not
repeated. Definitions are supplied for the member functions, completing the definition
of the class. The file widget.cc could be compiled and linked into other programs

containing widgets. This other code should also include the header file widget.hh.

5.3.3 Using Function and Class and Libraries

The . cc files containing the definitions of functions and classes can be compiled before
becoming part of a program which used them, thereby saving time when the program
is compiled. This produces an intermediate file, usually with an .o extension called
an object file containing the pre-compiled code. The process of combining .o files into
a program is called linking and is generally performed by the compiler as it compiles
the main bode of the program. To use one of these pre-compiled files, the compiler
is instructed to link the .o when compiling the program. As discussed before, the
other files of code which use the functions or classes defined in the file must contain
its prototype.

Libraries are simply related groups of object files combined into a single file to

make the linking process simpler. With a library it is no longer necessary to know
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the names of the individual object files in order to link their contents, When a library
is linked with a program, it is searched for the components that the programs needs.
On Unix systems, libraries generally have names in the form libname.a and can be
linked into a program with the compiler command -1name. Libraries often have their

own header files which #include all of the header files of the components within it.

5.3.4 Essential Member Functions

A class created by the programmer can be endowed with any member functions
desired. There are also three special member functions which must be defined in order
for the compiler to properly handle objects of the class. These member functions
are constructors, copy constructors and destructors. These member functions are
important enough that if the programmer does not define them for a new class, the

compiler takes it upon itself to define them.

Constructors

The creation of an object is known as its construction and is performed by calling
a constructor member function of the class. Special actions necessary upon creating
the object are placed inside a constructor member function. For example, whatever
dynamically allocated memory an object of the might use can be allocated in a con-
structor. The constructors of a class all have the same name as the class itself and
they return no arguments. There can be more than one constructor for a class, so
long as they accept different arguments.

The arguments of a constructor can be used to determine the properties of the re-
sulting object. For example, the Matrix class has a constructor Matrix: :Matrix(int,
int) where the two integer argument are the dimensions of the resulting matrix. Cre-

ating an object of the Matrix class discussed looks like:

Matrix M(5,4);
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Here, M is the name of the Matrix object being created and (5,4) are arguments
being passed to the constructor. The resulting Matrix object would represent a 5 by

4 matrix.

Copy Constructor

This is a special constructor which creates a new object from an existing one. This
is done automatically by the compiler when an object is returned from a function,
or passing an object as an argument to a function. In both these cases a temporary
copy of the object is created using the copy constructor of the class. Like all construc-
tors, they have the same name as the class and are distinguished by their argument.
The exact specification of a copy constructor is: ClassName::ClassName(const
&ClassName). This indicates that the function’s argument is a reference to an object
of the same class, which it treats as a constant. If a copy constructor is not defined
for a class, the compiler creates one which invokes the copy operators of each of its
data members. A copy operator should be provided by the programmer whenever
this is not the desired behavior, as is often the case in classes which use dynamically

allocated memory.

Destructors

The duration of an object is the extent of the code during which it exists and other
code can use the object. When an object’s duration ends, a special member function
called the destructor is called. For classes which dynamically allocate memory, the
destructor is where the de-allocation of memory is usually performed. Only one
destructor can be defined for a class. It takes no arguments and has the special name
ClassName (). If no destructor is defined for a class, the compiler creates one which

simply invokes the destructors of the class’ data members.
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5.3.5 Operators for Classes

The operators of a language are the symbols which cause certain operations to be
performed on objects when invoked in the code. For example the common arithmetical
operators (+,-,/,%*) are defined to operate on all of the primitive numerical types
in C++. When a programmer creates a new class, the behavior of these operators
on objects of the class can also be defined. This is usually done by defining special
member functions of the class which correspond to these operators. The operators
we are most concerned with are parentheses and the left-shift operator <<.

To use a parenthesis operators with objects of a class, the class must define the spe-
cial member function return-type ClassName::operator() (argument-types)
and the operator is then invoked by ObjectName(arguments). This is equivalent
to the traditional notation for member functions: object.operator () (arguments).
For example, in class Matrix the parenthesis operator is defined to allow access to
individual elements with notation like M(i,j). The prototype of the member func-
tion which does this is double& Matrix::operator() (int, int), which takes two
integer arguments and returns a reference to a double value.

The left-shift operator is usually designed to work with C++- classes called streams
for outputting the contents of a class to the screen or a file. The most commonly
used output stream has the pre-defined name cout which sends information to the
standard output. Its usage with the left-shift operator looks like: cout << object.
A left-shift operator designed to work like this would have the prototype ostream&
operator<<(ostream&, Class &). The class ostream is one type of C++’s output

stream classes.

5.4 Generic Programming

Generic programming means the design and implementation of code which can oper-

ate on a variety of different types and implement the correct functionality for each. It
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is another code paradigm distinct from, but supported by, object-oriented program-
ming.

Object-oriented design often results in the creation of many new classes, each
represented by a different type. Situations arise when it is desirable to apply the
same code to these different types. Furthermore, C++ is a strongly typed language,
which means that the compiler will check to see that the objects passed to a function
are an exact match, or acceptable substitute, for the types in its definition. To
avoid re-writing functions to work with every different class, there is a need to write
functions which work with a variety of object types.

There two ways to write functions in C++ which can act generically over different
types of objects. Which method should be used depends on the kind of generic
behavior desired. The two types of generic code are run-time and compile-time and

depend on when the type of the argument is known.

5.4.1 Polymorphism and Run-Time Genericity

If the goal is to write functions which will accept arguments whose exact type is not
known wuntil the program is actually being run, then run-time genericity is desired.
There are significant performance issues surrounding the use of run-time genericity
which prevent us from applying it in this project.

The basic idea behind run-time genericity is called polymorphism which means
that the responsibility of providing the correct functionality belongs to a class which
implements it (usually as a member function). Varying functionality is attained at
run time by using objects of these different types. The mechanism which makes this
possible has already been encountered in Section (5.2.3) on inheritance. The different
classes which are to be used by a function are derived from a common base class. The
function which needs to behave polymorphically is then written to work with the base
class as its type. Objects of the various derived types are then when the program
executes. The key here is that the compiler allows derived types to be passed to a

function in the place of base types.
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This kind of genericity requires that functions be given a special declaration to
ensure that the functionality of the derived class is invoked and not the base class
which actually appears in the definition. These are known as wirtual functions and
they require an extra layer of indirection to be executed. Because the compiler does
not know the exact function, the function call is implemented through a function
pointer, whose address is set when the code is run. This is partially responsible for
the performance problem with these kind of functions. The rest of the difference
is caused by the inability of the compiler to inline virtual functions, which means
that the function itself is copied directly into the code where it is called. This isn’t
possible because the compiler simply doesn’t know what the function is. For more

information, see [Str, Chapter 12]

5.4.2 Templates and Compile-Time Genericity

Compile-time genericity refers to code written to act generically with different types
which are known when the code is compiled. This is implemented through a C+-+
language construct called the template. With a template, functions and classes can
be written with place-holders substituted for one or more unknown argument types.
When the compiler finds a templated function being used, a version of the function
is created and compiled where the correct argument types are substituted for the
place-holders. When templated classes are created, the types to be substituted are
given explicitly. These specific versions of a template are called instantiations of the
template. Note that compile-time genericity does not require virtual functions and
thus avoids the associated performance problems.

We illustrate the difference between the definition of a template and an ordinary

function with an example.

template <class T>
T min(T a, T b){
if (a<b) return a;
else return b;

};
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The statement template <class T> declare the following definition to be a tem-
plate on the unknown type T. (Primitive data types can be used, even though T is
called a class.) The template function min is then defined which takes two arguments
of type T and returns one. When the function min is invoked in code, for example by:
min(4.5, -8.9) a version of the min function is created with an appropriate data
type. In this , float. Note that this function can be instantiated with any type for
which the operator < is defined. This can include user-defined classes through the
definition of operator<, as discussed in Section 5.3.5. Invoking min on a class which
does not support this operator would result in a compiling error.

A templated class is defined as in the following example.
template <class Key, class Target>
class Pair {

Key theKey;
Target theTarget;

Here, there are two template place-holders, Key and Target. The resulting class
is called Pair<Key, Target> and contains an object of Key type and an object of
Target type. (This class template would be useful in the context of database pro-
gramming for creating indexed lists of various types.) When objects of this type are

created, the full name of the type must be specified:

Pair<int, String> employee;

Here, employee is an object of type Pair<int, String>.

Templates are a recent addition to C+-+ and their support by various compilers is
somewhat irregular. To date, many of the popular and freely available compilers do
not fully support templates, so every language construct available in a non-templated
class is not always available in a templated one. For example, the popular gcc compiler
from the Gnu Free Software Foundation does not support static members or inlining

of member functions in templated classes in version 2.7.2. Although we won’t go into
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these issues here, they have important ramifications for the flexibility and performance
of the resulting code.

We’ve barely touched on the use of templates in this introduction. For more
information see, [Str, Chapter 13], [Oua, Chapter 24|, [Mur, Chapters 7,8] and [Lad,
Chapter 1].

5.5 Using Objects to Represent Functions

The use of functions in code to represent mathematical functions suffers from a few
key limitations. We discuss these here, and show how the use of objects to represent
functions can solve these problems.

When a code function is written, it necessarily represents a single mathematical

function. For example:

double theFunc(double x) {
return O0.5%xxx + 0.25xx + 1;

}

implements the quadratic function 322 + 32+ 1. If we want a more general quadratic

function, we might write it as follows:

double A,B,C

double quadFunc(double x) {
return A*x*x + Bxx + C;

}

Note that the coefficients A,B and C are defined outside the function. This is necessary
if they are to be accessible to other parts of the code. (In Fortran, this might be
done with a common block.) Now we can implement various quadratic functions,
but this code can only represent only one function at a time. There is no way
to implement more than one quadratic function at a time without duplicating this

function. The second version of the function and its coefficients would require different



Chapter 5. Object-Oriented Design and Programming for Scientific Applications107

names, because names can not be duplicated within the same scope. This would
complicate writing other code which works with these functions.

In situations where only one instance of a particular function is needed and will
be used in a limited variety of ways, then this method can be made to work. This
is more common for functions which are being used for the high-level organization of
code, rather than as mathematical functions.

For mathematical functions, and functions which can be used in a variety of
settings, this approach is inadequate. We need a way to create functions which can
be manifested as different instances whose data is independent. This is accomplished
by writing a class.

Consider the following class.

class Quad {
public:
double A, B, C;
double operator() (double x) { return A*x*x + Bxx + C; }

}

This defines a class which represents quadratic functions. It can be used as follows:

void main(){
double result;
Quad funcli;

funcl.A = 0.5;
funcl.B = 0.25;
funcl1.C = 1;

result = func1(1.0);
Quad func2;

}

The second through fifth statements create a Quad object called funcil and assign the
value of its three coefficients. The sixth statement evaluates the quadratic function
represented by funcl and assigns it to result. This works by calling the member
function operator() which implements the function-like calling method used here.
The last line creates another Quad object whose coefficients are completely indepen-

dent of those in funcl.



Chapter 6

Applications of Object-Oriented Design

The goals outlined in the introduction to Chapter 5 have lead to the development
of three bodies of code representing different levels of generality in the computations
they perform. The less general code is more specifically tailored to the computational
problems discussed in Chapter 4 and uses the more general code to handle its basic
operations. We will describe these bodies of code beginning from the most general
elements and finishing with the most specific.

The first level consists of code which performs fundamental mathematical op-
erations. It includes a library of classes representing matrices and vectors and code
which implement some of the familiar operators of numerical linear algebra. This level
also contains operators for numerical quadrature, integration of systems of ordinary
differential equations and optimization of functions.

Many parts of this library, perhaps especially the first level, are narrower in ap-
plication than would be expected of a general purpose library. For example, the
Matrix/Vector library only implements rectangular matrices and square banded ma-
trices. Factorization of these types of matrices is limited to LU decompositions. This
is due to the purpose for which the library was developed.

Features were added to the library as they were deemed useful for solving the
particular problems of interest in this research project. Efforts were taken, however,

to write code which would support the addition of new features and the eventual
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expansion into a complete library. This is done in various parts of the library by
isolating the details of algorithms in classes which represent them. This class can then
be replaced by others playing the same role, but implementing different methods. We
will encounter examples of this design approach in all three levels of code.

The second level involves the creation of classes for use in one-dimensional Galerkin
finite element calculations. It includes classes which represent one dimensional grids
defined on an interval, and classes which represent the shape functions from which
basis functions are assembled. These classes are used in turn by other classes which
represent a set of Galerkin basis functions on a particular grid. These classes are
somewhat less general than those in the basic library and their functioning obeys
specific inter-relationships which are more complex. The dependence relationship
between classes has been kept one-way whenever possible to simplify the development
and testing of code.

The third level of code is the most specific and contains classes designed to solve
the particular finite element problems from Sections 4.5,4.3 and 4.7 of this paper.
The inter-relationships between the various classes are even more exacting, preventing
their use in a really generic way. However, even at this level of code attention has
been paid to a design which separates the various parts of the problem, and allows

for different problems to be solved within the same framework.

6.1 The Matrix/Vector library

6.1.1 Design Goals

The Matrix/Vector library was designed to support the following features.
e Dynamic sizing.
e Responsible memory management.
e Size checking.

e Minimizing memory allocation and data copying.
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e Reuse of Fortran LAPACK.

We examine each of these items in more detail.

Dynamic Sizing

Matrices and vectors can be created with sizes that are not determined until the
code is being executed and are not limited by constraints determined when the code
is compiled. Furthermore, a matrix or vector can be resized during the execution
of the program. (Note that this is a kind of run-time genericity which depends on
C-++’s ability to dynamically allocate memory.) This overcomes a serious limitation
of Fortran 77, in which matrices are stored as part of arrays of memory which have
fixed sizes. The size of the array limits the size of the matrices it can contain and
cannot be changed without re-compiling the code.

The dynamic sizing feature is usually used to allow the size of objects to be
specified when the program is run, rather than resize an already created object.
Because it involves interaction with the operating system, allocating and deallocating
memory is a slow operation, so resizing objects is avoided in the rest of the library
or applications which use it. Furthermore, resizing a matrix or vector object always

discards its contents.

Memory Management

A consequence of using dynamically allocated memory is the need to de-allocate
memory which is no longer needed. (See Section 5.1.4) Objects in the Matrix/Vector

library are therefore designed to keep track of and de-allocate memory as needed.

Size Checking

Matrix/Vector or Matrix/Matrix operations are not allowed on objects which are
not of compatible sizes. The mechanism for checking the sizes is designed to not

excessively burden the execution of the code.
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Minimizing Memory Allocation and Data Copying

The process of allocating memory and copying data are slow, so efforts are taken to
minimize the number of times this happens in the course of a program. The solution
we implement is to allow a matrix or vector to act as a “view” of data belonging to
another object. These views can be used to pick out subsets of the data contained
in the other object without a copy operation. This has implications in the memory
management part of the code, since an object acting as a view into data it does not

own is not responsible for de-allocation of the data.

Reuse of Fortran LAPACK.

All three levels of the Basic Linear Algebra Subprograms are accessible through func-
tions which apply them to the matrix and vector objects in the library. This is done
by taking the necessary data from the matrix or vector object and calling the compiled
versions of the Fortran BLAS routines. Similarly, LU factorizations are implemented
for the matrix classes by calling the appropriate LAPACK routines. LAPACK is used
for these jobs because it is a widely used, freely available library which exists in highly
optimized forms for various computers. The NIST project [LAPACK++] is another
example of this approach.

This design decision has wide reaching implications for how the library is imple-
mented. For example, data for matrices is stored by column in a single one dimen-
sional array, because this is the way Fortran arrays are stored. Likewise, the data
for banded matrices is stored in the banded storage format used by various LAPACK

routines.

6.1.2 Interface of the Matrix/Vector Library Objects

We begin by describing the external interface that the various classes in the library
present to users. This is the key information for using the library within an ap-

plication. The material presented here is an overview. A detailed summary is in
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Appendix A

The library consists of three elementary types: Matrix, Vector, BandedMatrix
representing matrices, vectors and banded matrices respectively. Two derivative
types: MatrixLU, BandedMatrixLU implement LU factorizations and solve linear sys-
tems for the matrix types. Internally BandedMatrix uses a banded storage scheme.

Externally, it functions much the same as Matrix.

Owner/View operation

The Matrix and Vector classes have two distinct modes of operation. They can
either own their data, or act as views into data which is contained in another object
or by other code. Functions for accessing and changing data, and all functions which
operate on Matrix and Vector objects function identically whether the object is an
owner or a view. At this time, there is no view support for the BandedMatrix class

because of the internal storage requirements.

Construction

Recall that objects are created in a C++ program through the process of construction.
Each class has various constructor member functions to which various arguments are
passed at construction.

The three elementary classes can all be constructed with no arguments, resulting
in matrices and vectors of size zero, or with integer arguments that specify their size.
Objects of class Vector require a single argument for the size, and can optionally
accept a second boolean argument indicating whether the object should be a column
or row vector. (Column vectors are the default and are indicated by the boolean value
true.) Matrices are constructed with two arguments giving the number of rows and
columns. Since the BandedMatrix class only supports square matrices, these objects
are constructed with three parameters giving the size, the number of upper bands
and the number of lower bands. Most operations on vectors, matrices and banded

matrices of size zero are illegal, except those which resize the object.
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The LU classes are usually constructed with a Matrix or BandedMatrix argument.
The data of the construction argument is copied and factored inside the LU class
object, leaving the original version intact. An object of these classes can also be
assigned to another matrix or banded matrix, using the copy member function with
a Matrix or BandedMatrix argument. This is necessary if no matrix was specified at
construction.

The values in a matrix or vector are not initialized by the library code when it is
constructed. Some compilers will automatically set the contents of allocated memory
to zero while others do not, leaving them with contents that are essentially random.
When using such a compiler, it is important to assign a value to every element in
the object. As seen in the section on element reference, an entire matrix, vector, or

banded matrix can be set to zero with one line of code: object =0

Resizing

The Matrix, Vector and BandedMatrix classes can be resized after construction by
calling the resize member function and specifying a new size. This is required when
using an object constructed with a zero size. Objects can also be automatically resized

to match the size of another object of the same type with the resize command.

Initial Data

Matrix and Vector classes can be assigned initial data upon construction through the
constructors Matrix: :Matrix(double*, int, int) and Vector::Vector(doublex*,
int). If the pointer argument is non-constant, the object becomes a view of the data,
if the argument is constant, a copy is made and the object owns the data. Objects

of class BandedMatrix cannot be constructed this way.
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Element reference

All three elementary classes support the parenthesis notation for referring to indi-
vidual elements. All indices begin at 0. For example, M(2,4) is the matrix element
in the third row and fifth column of M and v(2) is the third element of vector v.
This can also be used for assigning values to the elements, i.e., M(2,4)=10.0. This
operator also works for banded matrices and automatically accounts for the banded
storage scheme. If the element referred to is outside the bands, 0 is returned as its
value and assigning to it has no effect. These classes also support assignment to all

elements by a scalar value using the operator =.

Output

Output of objects in the library is handled through C++’s stream classes. These are
a large library of classes which support formatted and unformatted output to stan-
dard devices including files. Implementation is done though the left-shift operator:

operator<<(ostream& B)

Examples:
Consider the following fragment of C++ code:

#include"Matrix.hh"
#include"Vector.hh"
#include"BandedMatrix.hh"
#include"blas++.hh"

void main(void){
Matrix M(6,6);

Vector x(6), bl(6), b2;
BandedMatrix B;

B.resize(6,1,2);
b2.resize(bl);
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for (int i=0; i<6 ; ++i) {
for (int j=0; j<6 ; ++j) {
M(i,j)=1.0/(1+i+j);

+

x(1) = i;
+
B =2.0;
B(0,5)=100;

for (int i=0; i<6 ; ++i) B(i,i)=-1.0;

cout << "M:" << endl << M << endl << endl;
cout << "B:" << endl << B << endl << endl;
cout << "x:" << endl << x << endl << endl;

The first four lines are directives to include the appropriate header files as de-
scribed in Section 5.3.3. The first three contain class prototypes and the last is a
library header file for the BLAS routines.

The next line begins the main function which every program must contain. This
is where the execution of the program begins. The matrix M and vectors x and bl are
constructed with non-zero sizes, while the banded Matrix B is constructed with size
zero, and resized to 6 by 6 with one upper and two lower diagonals. The vector b2 is
constructed with zero size and resized to match the size of bil.

The next statements are nested for loops which set the value of the elements in M

and x. Matrix M becomes the Hilbert matrix of size 6, where M;; = and x; =1,

1
T+ity
fori,7 =0,...,5.

The next three lines set the values of B. First, all of the elements in the bandwidth
of B are set to 2.0. This operation does not change the value of elements outside the
bands. The next line is an attempt to assign to an element of B which is outside the
bands and which has no effect. Then all of the diagonal elements are set to —1 inside

another for loop.
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The statements beginning with cout are output statements. They output a label
and the contents of A, B and x, respectively. (endl is used to terminate each line of

output.) The output is:

M:
1 0.5 0.333333 0.25 2 0.166667

0.5 0.333333 0.25 0.2 0.166667 0.142857
0.333333 0.25 0.2 0.166667 0.142857 0.125
0.2
0.2
0.

0.
2

5 0.2 0.166667 0.142857 0.125 0.111111
0.166667 0.142857 0.125 0.111111 0.1
166667 0.142857 0.125 0.111111 0.1 0.0909091

B:
-120000
2-12000
22-1200
022-120
0022-12
00022 -1
X:
0
1
2
3
4
5

Notice that the off-diagonal elements of B are still zero.

A superset of the BLAS routines are implemented for the Matrix, Vector and
BandedMatrix classes. Most of the level one BLAS are written so that they can
be applied to matrices and banded matrices as well as vectors. Furthermore, the
multiplication of banded matrices with regular matrices is supported.

Continuing the sample code above, the following code (inserted inside the main

function) illustrates some of these functions.
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cout << "|x|_1: " << Blas_Norml(x) << endl;
cout << "[x|_2: " << Blas_Norm2(x) << endl << endl;

Blas_Mat_Vec_Mult(M,x,b1,1.0,0.0);
Blas_Mat_Vec_Mult(B,x,b2,1.0,0.0)

I

cout << "bl:" << endl << bl << endl << endl;
cout << "b2:" << endl << b2 << endl << endl;

The first two lines compute and output the /; and l5 norms of the vector x. Line four
computes the matrix-vector product Mz and stores the result in the vector bl. Note
this this function is built upon the LAPACK routine DGEMYV, which implements
the operation: aMv + Bz — x. The last two parameters in the function call are the
values of o and (3. The last line computes the product Bz and stores the result in

b2. The final lines then output the contents of bl and b2. The result is as follows:

|x|_1: 15
|x|_2: 7.4162

bil:

.55
.81429
.34643
.01746
.77183
.58074

= =, NN DNDW

b2:

w

11
16

The full list of BLAS routines is given in appendix B.
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Using Factorizations

The factorizations in objects of the LU classes are then used through the member
function solveIP(Matrix& B), which accepts a matrix or vector as an argument. The
function computes the solution of the linear problem M X = B where M is represented
by the factorization object and B is given in the argument. The computation is done
in place, so the result is returned in the matrix argument B.

Continuing the above example, we add the following statements to main.

MatrixLU MLU(M);
BandedMatrixLU BLU;

BLU. copy (B) ;

MLU.solveIP(bl);
BLU.solveIP(b2);

cout << "inv(M)bl:" << endl << bl << endl;
cout << "inv(B)b2:" << endl << b2 << endl;

Blas_Add_Mult(bl,-1.0,x);
Blas_Add_Mult(b2,-1.0,x);

cout << "Error in matrix solve: " << Blas_Norm2(bl) << endl;
cout << "Error in banded matrix solve: " << Blas_Norm2(b2) << endl;

This creates a MatrixLU class which is assigned to matrix M upon construction, and a
BandedMatrixLU class BLU which is originally unassigned. The next statement assigns
BLU to the banded matrix B. The following two lines solve the problems Mz = b1 and
Bz = b2, storing the results in vectors bl and b2. After outputting the two solutions,
x is subtracted from each and the norm of the residual is computed.

inv(M)bl:

6.22113e-13
1

2
3
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inv(B)b2:
3.88578e-16
1

O N

Error in matrix solve: 3.78112e-10
Error in banded matrix solve: 1.57499e-15

6.1.3 Implementation of the Matrix/Vector Library

All of the objects in the Matrix/Vector library use double precision real numbers
as their basic type. We briefly summarize the implementation of each class in the
library with emphasis on its data members and the part of its interface responsible

for accessing the data.

doubleVector

The class doubleVector was created to handle the dynamically allocated arrays of
double precision numbers used in all of the other classes in the library. It implements
access to the data through operator[], prevents access to elements which are out
of range, and assumes the responsibility of deallocating the data when its lifetime
expires. It also keeps track of whether it owns the data or is acting as a “view”.
Objects of class doubleVector also return a pointer to the data it stores through the
member function double* addr(void). This is for use with the Fortran LAPACK

routines, which expect pointer arguments for arrays of data.
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Matrix

Class Matrix has a data member object of type doubleVector which contains its
data. Class Matrix is also, directly or indirectly a base class for every other class in
the library, thereby providing the data storage for each of these classes. It also stores
the two dimensions of the matrix as integer data members and implements access to
its data through the parenthesis notation discussed in Section 5.3.5. This is done by
mapping the row and column indices to the correct element in its doubleVector data

member.

BandedMatrix

Class BandedMatrix is inherited from Matrix and so the Matrix parent provides
the data storage and part of the data accessing interface. Class BandedMatrix is
responsible for implementing the remaining part of the data accessing routine and
storing the number of upper and lower bands in the matrix.

Objects of this class use the same banded storage scheme as the factorization
routines in LAPACK. In this scheme, a square banded matrix of size N with [ lower
diagonals and u upper diagonals is stored as a matrix with N+1 columns and N+2[+u
rows. The bands of the original matrix become rows [ through N + 2] + u — 1 of the
storage matrix while the columns of the original matrix are preserved. (The extra
column is not required by LAPACK, but is included to prevent accidental out of
bound accesses by other routines.) Rows 0 through [ — 1 of the storage matrix are not
used for storage, but are included for use by LAPACK factorization routines. The

mapping from logical coordinates (i, j) to the storage coordinates (i, j) is
= l+ut+i—j provided —u<i—j<I
Jo=7
BandedMatrix implements this mapping between the logical and stored matrices.

Then the Matrix parent handles the mapping of the stored matrix coordinates into

the data held by the doubleVector.
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Vector

We view vectors as matrices which have (at least) one dimension of size one. Conse-
quently, we derive class Vector from class Matrix. Additional code in class Vector
enforces the requirement that one of the dimensions be equal to one. This class also
implements single index access to the data through the operator operator () (int i)
by calling either Matrix: :operator()(i,0) or Matrix::operator() (0,i) as ap-

propriate.

LU Factorization Classes

The classes MatrixLU and BandedMatrixLU are both inherited from Matrix and
BandedMatrix but not in the same manner as discussed before. A more restric-
tive means of inheritance called private inheritance is used. This is different from
the public inheritance discussed earlier in that the components of the base class are
accessible only inside the derived class, even if they are public in the base class. In
effect, the base class is a private part of the derived class. We use this type of inheri-
tance here because the behavior of an LU class is sufficiently different from that of its
base class that we do not want to be able to treat is as one. Recall that when classes
are inherited publicly, C++ supports treating an object of the derived class as if it
were an object of the base class in some situations.

The LU classes also require that the matrix object they represent be square. When
constructed with or reassigned to a Matrix object, the copy operator of the parent
class is invoked with the target matrix as its argument. This creates a copy of the
target accessible only inside the LU object. The LU class then calls the appropriate
LAPACK routine (DGETRF for Matrix and DGBTRF for BandedMatrix) for fac-
toring the matrix type and stores the pivot information generated by these routines.
These classes also solve linear systems using the factorizations they represent. The

solveIP member function takes a Vector or Matrix argument and passes it to the
correct LAPACK routine (DGETRS or DGBTRS) with the factorization and pivot
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information. The result is returned in the argument.

6.2 Function Classes

A small number of classes have been written to implement particular functions. The
creation of new classes to represent different functions is a simple matter. All of these
classes implement function evaluation through the member function operator (). We
summarize the most important of these classes here. These are detailed further in

Appendix C.1

6.2.1 Class Polynomial

The first of these is class Polynomial whose objects represent polynomials of arbitrary
degree. This class supports the assignment of individual coefficients through the
bracket notation [], i.e., if poly is an object of class Polynomial then poly[0]
represents the highest-order coefficient. Polynomials are constructed with a degree
and can be resized through the member function set_degree(int). The number
of coefficients is one more then the degree of the polynomial, so the coefficients are
poly[0] through poly[degree]. The value of the degree can be obtained through
get_degree() and the polynomial is evaluated through poly(value). The primary
use of class Polynomial is in class ShapeFunctionsCO, which uses them to represent
the shape functions from which the basis elements of a Galerkin approximation scheme

are made. This is described further in Section 6.3.2.

6.2.2 Class Harmonic

Class Harmonic is used to represent the function A sin(27x f+¢), where the amplitude

A, the frequency f and the phase shift ¢ are all specified at construction.
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6.2.3 Class Indicator

This class represents the indicator function on an interval. The upper and lower
bounds are specified at construction time and the function evaluates to 1 or 0 depend-
ing on whether or not the argument is inside the interval. The interval is considered

to be closed, so the function evaluates to one at each of its end-points.

6.2.4 Class Windowed

This is a template class which applies an indicator function to an arbitrary function
of another type. It is constructed by providing this other function and either a
range of values for the interval or an object of class Indicator. This class and class
Harmonic are used to represent the windowed interrogation signals used throughout

the simulations. The actual class in use is Windowed<Harmonic>.

6.3 Finite Element Classes

The next level of code consists of classes and functions useful in the calculation of
one-dimensional finite element problems. These were developed with their usefulness
to the problems from Chapter 4 in mind, but have applications to other problems as
well. The further development of this level of the code would be of great benefit to

other scientific applications.

Class Families

In this section and the next, it will be useful to discuss groups of classes called families
whose members serve similar roles in different applications. The classes in a family
may be related to one another through inheritance or by being different instantiations
of a templated class. A family is often defined by the requirement that its members
implement a common interface. This would mean that all of the classes in a family

would all implement a common set of public member functions and have a common
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set of public data members. One reason for so defining a family of classes is for use

as arguments of a templated class or function which uses that particular interface.

6.3.1 Grid Classes

Members of the family of grid classes represent a partition of an interval into a finite
number of points. Classes in the family must implement the operator operator () (int
n) which returns the coordinate of node n, and the member function d(int n) which
returns the distance between nodes n and n + 1, and size(void) which returns the
number of nodes.

There are currently two classes in the grid family. The class grid is the more
general one, allowing for any kind of distribution of its nodes. Class uniformGrid is
inherited from grid and represents uniform classes only. All of the basic functionality
required by classes in this family is inherited from the base class grid. Following this
pattern of development makes the addition of specialized classes very simple, since
then can inherit the minimum necessary functioning from this class. The complete

interfaces of these classes are given in Appendix E.1.

6.3.2 Galerkin Finite Element Classes and Functions

The main class in this family is the template class GalerkinC0<G>, whose template
argument specifies the type of the grid class on which it is based. Internally it contains

a BasisFunctionsCO class, which in turn uses the ShapeFunctionsCO class.

ShapeFunctionsCO

The ShapeFunctionsCO class represents information about shape functions of a cer-
tain degree defined on the reference interval [—1,1]. These are the building blocks
from which the Galerkin basis functions are built. The desired degree is the only
information specified upon construction of the object. The only supported values for

the degree are d =1, 2, 3.
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Once created, the ShapeFunctionsCO object provides information about the shape
functions. It supports the evaluation of the shape functions s;(§) through double
ShapeFunctionsCO: :operator() (int i, double z), and the shape function deriva-
tives s;(¢) through double ShapeFunctionsCO::deriv(int i, double z). Values

of the following matrices are provided:

My = [ (@€
Wiy = [ si@s(e)e
Ky = [ s

Individual elements are referenced through member functions M(int i, int j), W
(int i, int j) and K(int i, int j), or the entire matrices can be retrieved as
pointers to double with the member functions Mmatrix(void), Wmatrix(void), and

Kmatrix(void). The complete interface is detailed in Appendix E.2

Basis Functions

Class BasisFunctionsCO uses an instance of class ShapeFunctionsCO internally. It
represents the basis functions on an interval but does not contain the geometric
information. without reference to any particular domain. Instead, it is concerned
with the composition of the basis functions from shape functions, the relationship
of the shape functions to the intervals of the domain, and whether or not these
functions are zero on the boundaries. Its interface is described fully in Appendix E.3.

Its primary role is to assist in the computations of a GalerkinC0<G> object.

Galerkin Objects

Class GalerkinC0<G> contains a grid object of type G and a ShapeFunctionsCO ob-
ject. The result is a representation of the basis functions ¢;(z) on the interval specified

by the grid object. They can be used to evaluate the basis functions at points in the
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domain and compute parts of the mass, stiffness and flex matrices. The entire inter-
face is covered in Appendix E.4

Most currently existing applications use the GalerkinCO<uniformGrid> instan-
tiation of the GalerkinCO<G> template. For the numerical problems of Section 4.5
two such classes are used to represent discretizations of the space (z) and history (s)
variables.

Various functions are written to operate on GalerkinCO classes. These perform
operations such as computing the vector of inner products (¢;, f) and the matrix
(¢if, ¢;) where the ¢; are the basis functions and f is an arbitrary function. These

functions are described in Appendix E.5

6.4 Differential Equation Classes and Integration

Classes

First-order differential equations of the form ¢ = f(¢,y) are represented in this li-
brary as classes which implement the operation of computing f(¢,y). Classes in this
family must implement two member functions: void operator() (double, Vector,
Vector) and int get_size().

The member function void operator() (double, Vector, Vector) is for eval-
uating the derivative. The first two arguments are the time ¢ and state y. The final
vector argument contains the derivative y after the function is called. The member
function int get_size() returns the size of the system of differential equations.

We examine briefly an alternative design for the family of differential equations
classes which was tested and rejected for reasons of efficiency. In this version, evaluat-
ing the derivative is done through the member function Vector operator() (Vector,
double). Here the derivative is returned through the function return mechanism.
This syntax more closely resembles mathematical usage of the functions, since it
allows statements like deriv = equation(time,state).

This approach is considerably less efficient than the one described above because
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of how C++ handles objects returned from functions. Since C++ normally passes
arguments (and return arguments) by value and not by reference, a temporary copy of
the object to be returned is created (using the default copy operator of the class). For
Vector objects, this means allocating more memory and copying the results into it.
Outside the function, another copy operation is required from the temporary object
into the left-hand-side vector. In the example above, the data in the temporary
object returned by equation(time,state) must be copied into the vector deriv.
Then the temporary object is destroyed and its memory de-allocated. Every function
evaluation thus requires two extra memory operations and two extra copy operations.
These operations are avoided by providing the storage space for the result as another

argument to the function.

6.4.1 Integrators and System Classes

The library currently contains two methods for integrating systems of ordinary differ-
ential equations. The first is written entirely in C++ and implements a fourth order
Runga-Kutta method. The second is an interface to the odepack routine lsoda, an
adaptive stiff/non-stiff solver.

An Integrator is expected to support the following member functions in its inter-

face:

void set_time(double)
double get_time(void)
void set_state(Vector)

Vector& get_state(void)

void integrate_to(double)

void advance(double)

The meanings are explained further in Appendix D.1, but most are clear from the

function name. Note that get_state returns a reference to a vector to avoid a copy



Chapter 6. Applications of Object-Oriented Design 128

operation. Hence, this function can also be used to modify the state of the system.
Additional integrators added to the library may implement other functions as well;
These are the bare minimum that any integrator should implement.

In order to work with a variety of functions, integrator classes are templated over
the type of the function they are applied to. These functions are expected to belong
to the differential equations family, i.e., they must implement the member functions
void operator() (double, Vector, Vector) and int get_size(void).

The integrator class keeps track of the the current time and state of the system.
In effect, it represents the entire differential equation including the function and the
state of the system, as well as implementing a numerical approximation scheme. For
this reason, we also refer to these as System classes, especially in the context of
discussing the forward and inverse problem classes of Section 6.8.

Class rkMethodIP<F> implements a fixed step size fourth order Runga-Kutta
method. Its complete interface is given in Appendix D.1.1.

The 1soda routine is accessed through a different syntax which is designed to
accommodate more routines as the library grows. The Isoda routine itself is rep-
resented by a special class called 1sodaMethod and the routine is combined with a
differential equation function through the templated class SystemIntegrator<F,M>.
Here the template argument F is the type of the differential equation class and M
is the type of the method class. The choice of method class is currently limited to
1sodaMethod. The SystemIntegrator class implements the system class interface,

providing a common interface to various methods represented by their own classes.

6.5 Optimization Routines

The class Optimizer acts as an interface to a Fortran optimization routine that
was originally chosen for the implementation of the Debye Model inverse problem

in Section 4.2. The class is designed to work with objective functions of the form
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void funcName(int*, double*, double*) which represents a mathematical map-
ping R” — R. Note that there is no return argument, and all of the function arguments
are pointers. This is typical of functions implemented as Fortran subroutines, which
is what the underlying optimization code is designed to work with. Fortran passes
all of its arguments by reference, which is accomplished in C and C++ by passing
pointers. The first argument is n, the size of the argument of the function. The
second argument points to the values for the objective function. This pointer should
refer to an array of at least size n which store the n argument values. The result is
returned in the memory location pointed to by the third argument.

Upon construction, class Optimizer takes arguments for the size of the system
and an objective function. To date this class does not implement solutions when the
user provides a second or third function for the gradient or Hessian of the objective
function.

The complete interface of the Optimizer class is given in Appendix D.2. The
procedure for using the class is roughly as follows. First, the class is created with a
pointer to the objective function it will operate on. The values of various parameters
for the optimization are then set, including the minimum and maximum parameter
values and diagonal scaling. When all the options are set, the optimization is begun
by calling the member function optimize(void). Afterword, the results of the opti-

mization can be retrieved with the member functions get_result() and get min().

6.6 Application Classes: Models, Discretizations

and Operators

These classes are part of the third and least abstract level of code developed in this
project. The code described in this and the following sections are designed specifically
for solving the electromagnetic hysteresis equations described in Chapter 4 in the case
with homogeneous material coefficients with or without the supra-conductive backing.

Three distinct versions of this problem are implemented with the classes described
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in this section. These are differential equation versions arising from the Debye and
Lorentz polarization models and the integro-differential equation version using the
hysteresis model of polarization. This last problem has three versions of its own,
corresponding to different hysteresis functions. Two implement the functions which
arise from the Debye and Lorentz polarization models and the third represents a
generic Galerkin approximation of the hysteresis function.

The implementation uses several class families to represent different aspects of the
problem. These families are state holder classes, model classes, parameter classes, dis-
cretization classes, and operator classes. All three versions of the problem (differen-
tial Debye and Lorentz and the integro-differential version) each have a corresponding
state holder class, discretization class and operator class. The model class family con-
tains three classes which represent the Debye, Lorentz and spline hysteresis functions
are for use with the classes which implement the integro-differential version of the
problem. The organization of the code largely reflects the split into representing the
original mathematical problem and representing the numerical algorithm as applied
to this problem. Complete descriptions of the interfaces of these classes are given in

Appendix F

6.6.1 Model Classes

Models are a family of classes which represent hysteresis models of electrical polar-
ization. They accept vector arguments upon construction which contain the values of
the parameters appearing in the hysteresis model. An existing model class can also
be given new parameter values by calling its assign member function. The model
class implements the derivative of the kernel function §(-) and the function’s zero
value, g(0) for use by other classes.

Three model classes have been developed. The Debye and Lorentz models are
represented by DebyeModel and LorentzModel. Internally, class ElementModel uses
the GalerkinCO class to represent the hysteresis function through its Galerkin ap-

proximation.
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6.6.2 Parameter Classes

The Debye and Lorentz model classes of the three model classes have an associ-
ated class designed to handle the conversion of parameter values. These are classes
DebyeParams and LorentzParams. These classes convert the physical parameter val-
ues into the values used in the numerical implementations of the models. The Debye
model is expressed in terms of the physical parameters (o, €4, €5, 7) while calculations
using this model are expressed in terms of the related set of parameters (o, €4, €5, )
where €; = €5 — €, and A = 1/c7. (The parameter ¢ is the speed of light in vacuum.)
In the Lorentz model, the physical parameters are (o, €5, €, wp, 7) While the compu-
tations are expressed in terms of (o, €, Wo, Wy, A) Where wy = wy/c, Uy = Wor/€s — €xo
and A = 1/2cr.

Each of these classes is publicly derived from class Vector, which means that
they can be passed to functions which expect a vector argument. The values of the
computational parameters are stored as the elements of the vector in the correct
locations expected by the model classes described above. This means that these
classes can be passed to the corresponding model class as the vector of parameters,

after converting the physical parameters to the required computational parameters.

6.6.3 Discretization Classes

There are three members of this class family. Classes DebyeDisc and LorentzDisc
represent the differential problems arising from the Debye and Lorentz models and
GeneralDisc is used to represent the general hysteresis model of polarization. Of
these, DebyeDisc and LorentzDisc are actual classes, while GeneralDisc is a class
template, where the template argument is a model class. Each of these classes com-
putes and stores the matrices and vectors which arise in the Galerkin finite element
approximation of their corresponding problems. These appear in the systems of equa-
tions (4.10), for the differential Debye problem, (4.22) for the differential Lorentz
problem and (4.44) for the hysteresis problem.
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All of these classes represent the same problem geometry with a finite slab whose
front and back edges correspond to grid nodes in the spatial discretization and all three
classes take arguments upon construction which describe the spatial discretization
of the problem. These are an object of type GalerkinCO<uniformGrid> and two
integers for the left and right elements which are on the boundary of the material.
(These classes can be easily made into templates on the type of grid, if other grids
are desired.) Class GeneralDisc takes a second GalerkinCO<uniformGrid> object
on construction which represents the discretization of the history variable s. (This
too could be templated on the type of the grid if desired.)

The two classes representing differential problems, DebyeDisc and LorentzDisc,
also take a Vector argument which contains the values of these material parameters
while class GeneralDisc, accepts an object of a corresponding model class. These
classes can also be updated with a new argument of the correct type. All three classes
have a member function assign which takes a vector argument of new parameter
values and updates the problem they represent. Class GeneralDisc can also be
updated this way with a new object of the appropriate model type. This feature is
designed for use in the inverse problem, where the same discretization will be used
to represent a succession of simulations which differ in the model parameter values.
Notice that the geometric information represented by the discretization class cannot
be changed, so the dimensions of the problem and location of the slab are fixed once

the object is created.

6.6.4 State Holder Classes

There are three classes in this family, DebyeStateHolder, LorentzStateHolder and
GeneralStateHolder, corresponding to the three discretization classes. Their jobs
are to represent the different pieces of data which make up the state of these systems
in a convenient way. All three members of this family are publicly derived from class
Vector, which provides them with storage and allows them to be treated as vectors

inside of integration routines.
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Inside each of these classes, the data is stored in the memory of the Vector parent
class. For DebyeStateHolder and LorentzStateHolder the data consists of the state
variables e, é and p. Class LorentzStateHolder also contains the data for p which
appears in the second order polarization equation. The class GeneralStateHolder
stores all of the data necessary for the hysteresis formulation of the problem. This
consists of the vectors e, é and the matrix U for approximating the history of é.

State holder classes each use wview vectors internally to provide access to differ-
ent parts of the data (see Section 6.1.2). For example the variables e, é,p and, in
LorentzStateHolder, p are all referenced with view vectors so they can be easily ex-
tracted from the rest of the data. Also, the differential equation for the polarization
uses only the elements of the variables e and é which correspond to positions inside
the material domain ). These sub-vectors are also accessed through view vectors
inside these classes. Similarly, inside GeneralStateHolder, e, ¢ and the matrix U

are accessed through view vectors.

6.6.5 Operator Classes

There are also three members of this class family, DebyeOperator, LorentzOperator
and GeneralOperator which correspond to the three members of the discretization
class family and the three state holder classes. Like the general discretization class,
the General operator class is a template, but its argument is the discretization type
and not the model type, i.e., GeneralDisc<DebyeModel> would be used with class
GeneralOperator<GeneralDisc<DebyeModel> >.

An operator class object is permanently associated with a discretization class
object when it is created. The operator class object then uses the matrix and vector
objects stored in the discretization object to implement the differential equation for
the problem it represents. These systems of equations are defined in (4.10), for the
differential Debye problem, (4.22) for the differential Lorentz problem and (4.44) for
the hysteresis problem.
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Since operator classes represent differential equations, they implement the inter-
face described in Section 6.4 for differential equation classes. Internally, the state
of the system and derivative are represented through objects of the correspond-
ing state holder class. The operator class also contains a function object of type
Windowed<Harmonic> representing the interrogating signal. The evaluation of this
function and its application to the derivative of the system is done in the course of
evaluating the derivative.

The division of each of the different problems into operator and discretization
classes is done to separate the storage and implementation of each problem. All of
the data arising from the physical parameters and discretization of the problem is
stored in the discretization class, while the computation of the state derivative is
provided by the operator class. A consequence of this division is that changing the
physical parameters of the problem only requires updating the discretization class.
This is most useful in the context of the inverse problem, where it is necessary to
repeat the simulation with many different parameter values. We note that the object
representing the interrogation signal is an exception, since it is contained by the
operator class and not the discretization class. This does not effect the usefulness
of the separation, however, because the parameters of the interrogating signal are
considered to be fixed in the inverse problems and there is no need to be able to

update these parameters.

6.7 Performing Simulations

The classes described above are all of the tools necessary to write code which performs
simulations of the differential Debye and Lorentz problems and the hysteresis formu-
lation of the problem. An example of code which does so is provided in Appendix G.
We outline the general procedure here. All of these steps can be performed in a few

lines of code, and many require just one.

1. If desired, load parameter values from data files, or query the user for values.
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2. Create the grid and GalerkinCO object which represents the spatial discretiza-

tion.

3. For a hysteresis problem, create the grid and GalerkinCO object which repre-

sents the discretization of the history.
4. For hysteresis problems, create a model class object from the parameter values.

5. Create an object of the discretization class from the GalerkinCO object(s), and

the parameter values or model object.
6. Create an object representing the interrogating signal.

7. Create an object of the operator class using the discretization object and the

interrogating signal.
8. Create an integrator system class with the operator class object.

9. Advance the system class to the desired time values. Output the results of the

integration.

6.8 Forward and Inverse Problems

These are the most application specific classes in the library, since they were written to
implement very specific computational problems. The forward problems of particular
interest to us are the ones discussed in Sections 4.1, 4.3, 4.5 in which we collect values
of the electric field at uniform times at the location z = 0. The programs originally
written to solve the forward and inverse problem for the Debye model were written in
Fortran and are not a part of this body of code. Code for solving forward problems
with Debye is included here because it required no special effort once the code for

solving the more general problems was in place.
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The classes which implement the forward and inverse problems come in pairs
which are designed to work together. There are currently two such pairs, both con-
sisting of template classes. Classes ForwardOperator and InverseOperator are gen-
eral operator classes which can be used with any system class (see Section 6.4.1).
(Class ForwardOperator is templated on the type of the system class, while the class
InverseOperator is templated on the type of the forward operator and the type of
the discretization.

Classes ForwardGeneral and InverseGeneral are specificly for implementing
the forward and inverse problems for the hysteresis problem of Section 4.5. These
are both template classes templated on the type of the model class (DebyeModel,
LorentzModel, ElementModel). The advantage of using these less general classes is
that the programmer must do less to use them, as will be seen below.

The responsibilities of the forward problem class in each pair are the same. It
integrates the system of equations over a series of time steps, extracts the data from
the solution at each time step (the value of the electric field at z = 0) and returns the
data as a Vector. Each version of the forward problem is also updateable, i.e., it can
be assigned to a new problem with different material parameters. Forward problem
classes have two uses in the code. They can be used on their own to generate the
data, which could then be saved to a file or used by an inverse problem object. Also,
both of these classes are used by the corresponding inverse problem classes to perform
the forward problem when the objective function is evaluated.

The ForwardOperator class is constructed by providing a system class object to
be integrated, the duration of the simulation, and the number of data points to be
collected. The user of the code is responsible for constructing the system object from
the appropriate discretization and operator classes. The forward problem can then
be updated by updating the discretization class used by the integrable system.

When it is constructed, an object of class ForwardGeneral must only be provided
an object of class GeneralDisc, a Windowed<Harmonic> object representing the in-

terrogating signal, plus the interval of time to integrate over and number of data
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points. Objects of the GeneralOperator class and the integrable system class are
automatically created and used inside the ForwardGeneral object. The interfaces for
these classes are given in Appendix F.5

Both of the inverse classes have two primary responsibilities. First, they both
implement the objective function J(¢). Internally, this means adjusting between the
argument of the objective function ¢ and the full set of model parameters, evaluating
the forward problem with the parameter values, then computing and returning the [,
norm of the error. The first step is necessary because not all of the parameters are
optimized over in any given inverse problem. The inverse problem class keeps track
of which parameters are being optimized over and fixed values which are being used
for the other parameters.

These classes are also responsible for organizing and executing the inverse problem.
They keep track of the data used in computing the [, error, upper and lower bounds
and diagonal scaling for the parameters and the results of the optimization once
completed. When the inverse problem is executed, appropriate arguments are passed
to an object of class Optimizer which performs the optimization. The inverse problem
class then interprets and presents the results.

The complete interfaces for these classes are given in Appendix F.6.



Chapter 7

Conclusion

7.1 Summary of Results

We began this work with the derivation of models for the scattering and transmission
of electromagnetic radiation by dispersive materials in one dimension. Beginning with
Maxwell’s equations for macroscopic materials, we imposed constitutive assumptions
about the material and derived a coupled system of equations for the electric field
and electric polarization in the time domain. We then investigated the analytic and
computational properties of these equations using two different formulations of the
polarization constitutive laws: a low order differential equation, or a convolution of a
kernel function with the history of the electric field. This latter formulation includes
the former through a suitable choice of the kernel function in the convolution, as well
as higher order differential models and the combined effects of multiple differential
models.

The computational investigations detailed in Chapter 4 begin with the first and
second order differential polarization models, known as the Debye and Lorentz mod-
els. Numerical simulations of the scattering/transmission problem were implemented
for both of these equations. The computational results exhibited the behavior known
to occur in these systems, specifically the development of the Sommerfeld and Bril-

louin precursor signals. This duplicates the important results of the frequency domain
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analyses of these problems. We then turned to using these simulations in the recovery
of the values of the parameters which appear in the polarization and wave equations.
Our results in this section show that, even in the presence of noise corrupting the
observed data, recovery of parameter values adequate for describing the electrody-
namics of the material is possible. Furthermore, the estimation of the parameters
of the Debye model was successfully used in a hybrid algorithm for estimating the
physical parameters and thickness of the one-dimensional material slab. The ability
to recover these parameters in the presence of noise of a magnitude equal to 5% of
the data is an important first in problems of this kind. This has significant implica-
tions for the use of these electromagnetic scattering techniques in applied problems
of material interrogation.

We also investigated the numerical implementation of the hysteretic polarization
model. To do this we used a Galerkin approximation of the electric field history
and kernel function over a finite history duration. In the case of the Debye model,
we saw that it is possible to obtain a highly accurate reconstruction of the results
obtained by the differential equation formulation. We also noted that the expense
of this computation compared to the differential equation version is considerable. In
the case of the second order Lorentz model, we argued that the oscillatory nature of
the hysteresis kernel makes a similar computation prohibitively expensive. We also
tested the inverse problem for the hysteresis formulation for a kernel function which
reproduces the Debye model results, and a general kernel function. In the case of the
Debye hysteresis kernel, the estimation problem was shown to give similar results to
the estimation problem using the differential model. This is due to the near equality
of solutions arising from these methods. In this test, the general kernels were repre-
sented through a Galerkin approximation of the hysteresis function’s derivative and
value at zero (where the hysteresis function derivative is the function in the integral
polarization term). This is enough to reconstruct the hysteresis function up to the

accuracy of the discretization. We found that a very difficult optimization problem
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arises from expressing the kernel as a function of the coefficients of this approxima-
tion. To test this, we attempted to reconstruct the Debye model kernel through its
coefficients. The full problem of recovering all of the coefficients in the approxima-
tion was shown to be over-parameterized, resulting in an optimization which could
not be performed in an acceptable amount of computer time. Reducing the size of the
problem by optimizing over just the two most significant parameters improved the
conditioning of the problem, but was still shown to be inferior to the results obtained
by using the Debye model parameterization. This result, combined with the added
expense of the hysteresis simulations, and the inability of the hysteresis formulation
to handle the Lorentz problem, leads us to conclude that the differential formulation
of the problem is more suitable for the estimation of parameters.

Although the hysteresis model did not prove to be more useful than the differential
model for simulation or estimation, it proved to be very valuable in the well-posedness
results for these problems. In Chapter 3, we showed that the one dimensional scat-
tering and transmission problem is well-posed using the hysteresis formulation of
the polarization. That is, we showed the existence, uniqueness, and continuous de-
pendence of the solutions on the data. This was done through the construction of
Galerkin style finite-element approximations which were then shown to converge to a
solution of the infinite-dimensional problem. A final piece of the analysis, the strong
convergence of the finite dimensional Galerkin approximations, is provided in [BZ].

The code written to solve many of the numerical problems arising in this research
was also done with the goal of developing a re-usable library of mathematical soft-
ware. This is described in Chapters 5 and 6. In this attempt we also sought a better
understanding of the issues surrounding the development of object-oriented numerical
software. The success of this part of the project can best be seen in the development
of the application programs used to obtain the results of Chapter 4. After a large
initial outlay of time, swift progress was made in creating specific application code.

The initial investment of time involved learning more about the C++ programming
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language and object-oriented design, plus the development and testing of the funda-
mental parts of the library. The development of the higher level software modules
happened more quickly in conjunction with the first application programs. The fi-
nal application programs, written after the library had reached near-final form, were
developed and coded the most quickly. For example, the code for representing the
system of equations arising from the differential Lorentz model was done quickly by
adapting the classes already created for the differential Debye model. The new parts
of these classes were written using the same mathematical operations as the classes
for Debye. The classes performing elementary mathematical operations required no
modification at all. Once this was done, no additional code needed to be written to
perform forward simulations for Lorentz, since the code implementing it was written
to act generically for various simulations. While the software modules for performing
inverse problems was originally model specific, the final versions can perform the de-
sired inverse problem for any of the models covered here. An important consequence
of this design is that it is readily expandable. Classes written to represent other mod-
els not covered here, and even other problems, can be used directly in place of already
existing components, allowing much of the existing code to be reused. The most fun-
damental mathematical operators have the greatest potential for re-use, while the
more problem specific application classes are written to allow modification for other

problems. This represents the real power of object-oriented software design.

7.2 Further Directions

We suggest further research directions for the computational and software-oriented
parts of this project. Our comparison between the differential and hysteretic for-
mulations is currently limited to the two differential models of Debye and Lorentz.
Higher order differential models may cause a re-evaluation of the relative efficiency

of the two formulations for simulations. This investigation would require a thorough
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understanding of the sensitivity of the problem to the polarization model. For ex-
ample, is it important to whether or not higher order differential equations, whose
solutions are expensive to compute, can be effectively approximated by lower order
models. This will also require a greater involvement with the intended applications
of the simulation, since this will affect the definition of effective approximation.
While any software library can be arbitrarily extended by the addition of new
features, there are specific advances which would greatly benefit the development
project begun here. First, a better understanding of the performance issues of object-
oriented software is called for. While care was taken to retain high efficiency in core
computations by reusing Fortran code in this library, the performance shortfall is
still considerable. An understanding of the causes and solutions to these performance
problems would greatly improve the usefulness of the library. Furthermore, there are
other development projects in scientific C++ which produce freely available software.
The incorporation of these for the core mathematical operations would improve per-

formance while still allowing for the local development of application specific modules.
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Appendix A

Interface Specification for the

Matrix/Vector Library

A.1 Class Matrix

Implementation:
Include: Matrix.hh

Link: library libmatrix.a (-lmatrix)

Constructors:

Matrix(void) Create a size zero matrix.
Matrix(int m, int n) Create a matrix of size m by n.
Matrix(const Matrix&B) Create a copy of the matrix B.

Matrix(double *p, int m, int n)

Construct a view matrix of the data at pointer p.

Matrix(const double* p, int m, int n)

Construct a matrix containing a copy of the data at pointer p.
Operators:
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void resize(int m, int n)

Resize the matrix to dimensions m by n. Discard old contents.
void resize(const Matrix& B)

Resize to match dimensions of matrix B. Do not copy contents of B.
void copy(const Matrix&)

Adopt the size of and copy the data in Matrix B
void view(Matrix& B)

Become a view of the data in matrix B. Retain current dimensions.
void view(double* p, int m, int n)

Become a matrix view of the data pointed to by p with dimensions m by n.
void operator=(double d)

Usage: M=d; Assign the scalar value d to each element in the matrix.
void operator=(const Matrix& B)

Usage: A=B; Adopt the size of and copy the data in matrix B.

double& operator() (int i, int j)

-th7 jth

Usage: A(i,j); Returns a reference to the i element of the matrix.

Can be used for access or assignment, i.e., v.= A(0,0); or A(i,j)=1/(1+i+]j);

Information:

int get_size(void)

Return total size (area) of matrix.
int get_size(int i)

Return size of dimension i=0,1.
int get_lda(void)

Return leading dimension of storage (=get_size(0))
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double* addr(void)

Return pointer to data.

bool owns_data(void)

Return true if matrix owns data, false if it is a view.

A.2 Class Vector

Implementation:
Include: Vector.hh

Link: library libmatrix.a (-lmatrix)

Constructors:

Vector(void)
Construct a size zero vector.
Vector(int m, bool s=true)
Construct a row or column vector of size m. When the second argument is
true or no second argument is given, a column vector is created.
Vector(const Vector& B)
Construct a copy of the vector B.
Vector(doublex v, int m, bool s=true)

Construct a view vector of the data at the pointer v.

Vector(const doublex v, int m, bool s=true)

Construct a vector containing a copy of the data at pointer v.

Operators: All of these operators are directly related to the same operator defined

for class Matrix in Appendix A.1. Operators which define a size for a Vector object
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also have an optional final boolean argument which indicates a row vector when

false. The other difference is that access through a single index is supported.

void resize(int n, bool s=true)

void resize(const Vector& B)

void copy(const Vector& B)
void view(doublex v, int m, bool s=true)

void view(Vector& B)
void operator=(const Vector& B)
void operator=(double s)

double& operator() (int i)
double& operator() (int i, int j)

Information:

int get_size(void)

Return the total size of the vector. This is equal to the size of its non-unit

dimension.
int get_size(int i)

Return the size of dimension i = 0,1. One of these two sizes is 1.

A.3 Class BandedMatrix

Implementation:
Include: BandedMatrix.hh

Link: library libmatrix.a (-lmatrix)

Constructors:
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BandedMatrix(void)

Construct a banded matrix of size zero.

BandedMatrix(int n, int du, int dl1)

Construct a banded matrix with size n, du upper bands and dl lower bands.

BandedMatrix(const BandedMatrix& B)

Construct a copy of banded matrix B.

Operators:

void copy(const BandedMatrix& B)

void operator=(const BandedMatrix& B)

Copy contents of B. Resize if necessary.

void operator=(double d)

Set all elements in the bands of the matrix to the scalar value d.

void resize(int n, int du, int dl1)

Resize the banded matrix to size n with du upper and dl lower diagonals.

Discard old contents.

void resize(const BandedMatrix& B)

Resize the banded matrix to match the dimensions of banded matrix B. Do

not copy the contents of B.

double& operator() (int i, int j)

th’ jth

Usage: B(i,j); Returns a reference to the i element, if this is inside

the bands of the matrix. Can be used for reference or assignment. If outside the

bands, return zero and ignore assignments.

Information:

int get_size(int i)
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Return logical size of dimension i.
int get_size(void)
Return area of storage matrix.
int get_dl(void)
Return number of lower diagonals.
int get_du(void)
Return number of upper diagonals.
int get_lda(void)
Return leading dimension of storage matrix. This is equal to du + 2 * dl + 1.
double* addr(void)
Return address of storage matrix (including extra storage).

double* stor_addr()

Return address of element where matrix storage begins. This skips over the

memory locations in the extra storage bands required for factorizations.

A.4 Class MatrixLU

The matrix factorization class MatrixLU is designed to implement LU factorizations of
square matrices represented by the class Matrix. It cannot be generally resized or have
its elements assigned to, hence many of the constructors and operators implemented

for matrices are not present here.

Implementation:
Include: MatrixLU.hh

Link: library libmatrix.a (-lmatrix)

Constructors:
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MatrixLU(void)

Construct a MatrixLU object that does not contain the factorization of a ma-

trix.

MatrixLU(const MatrixLU& B)

Construct a MatrixLU object that copies the data from and factors the contents

of the matrix B.

Operators:

void copy(const Matrix& B)

Copy the data from matrix B and factor. Resize as necessary.

void copy(const MatrixLU& B)

Become a copy of the MatrixLU object B.

int solveIP(Matrix &B)

Compute solution to linear equation X=MB, where M is represented by the

MatrixLLU object. Return the result in B.

A.5 Class BandedMatrixLU

Like MatrixLU, BandedMatriLU contains the data for an LU factorization of a banded
matrix represented by a BandedMatrix object. It also is not generally resizeable and

its individual elements can not be accessed directly.

Implementation:
Include: BandedMatrixLU.hh

Link: library libmatrix.a (-lmatrix)

Constructors:
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BandedMatrixLU(void)

Construct a BandedMatrixLU object that does not contain the factorization of

a banded matrix.

BandedMatrixLU(const BandedMatrixLU& B)

Construct a BandedMatrixLU object which copies the data from the argument

factors the contents of the banded matrix B.

Operators:

void copy(const BandedMatrix& B)

Resize copy data from and factor contents of B.
void copy(const BandedMatrixLU& B)
int solveIP(Matrix &B)

Compute solution to linear equation X=MB, where M is represented by the

BandedMatrixLU object. Return the result in B.
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Blas Routines

Implementation:

Include: blasi++.hh, blas2++.hh, blas3++.hh and blas4++.hh as necessary

Link: library 1libmyblas.a (-lmyblas)

B.1 BLAS1

double Blas Norml(Matrix x) | |1
void Blas_Add Mult(Matrix y, double a, const Matrix x) Yy<—ar+y
void Blas Mult(Matrix y, double a, Matrix x) Y «— azr
void Blas_Copy(Matrix y, Matrix x) Yy<—
double Blas_Dot_Prod(Matrix x, Matrix y) Ty
double Blas Norm2(Matrix x) | |2
void Blas_Scale(double a, Matrix x) T ax
void Blas_Swap(Matrix x, Matrix y) Ty
int Blas Index Max (Matrix x) i such that |z;| = max; |z;|

void Blas Apply Plane Rot(Vector x, Vector y, double c, double s)

void Blas_Gen_Plane_Rot(double a, double b, double c, double s)
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B.2 BLAS 2

void Blas Mat Trans Vec Mult(A, x, y, alpha, beta)

A Matrix

x,y Vector

alpha double default = 1.0
beta double default = 1.0

void Blas Mat Vec Mult(A, x, y, alpha, beta)
A Matrix
x,y Vector
alpha double default = 1.0
beta double default = 1.0

void Blas Mat Vec Mult(A, x, y, alpha, beta)
A BandedMatrix
x,y Vector
alpha double default = 1.0
beta double default = 1.0

void Blas R1 Update(A, x, y, alpha)
A Matrix
x,y Vector

alpha double default = 1.0

B.3 BLAS 3

void Blas Mat Mat Mult(A, B, C, alpha, beta)
A,B,C Matrix
alpha double default = 1.0
beta double default = 0.0

y — aAlz + By

y — aAx + By

y «— aAx + By

A— aAxyT + A

C — aAB + 3C
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void Blas_Mat_Trans_Mat Mult(A, B, C, alpha, beta) C « aATB+pC
A,B,C Matrix
alpha double default = 1.0
beta double default = 0.0

void Blas_Mat_Mat_Trans Mult(A, B, C, alpha, beta) C «— aATB+ pC
A,B,C Matrix
alpha double default = 1.0
beta double default = 0.0

B.4 Extensions to the BLAS

These functions are declared in file blas4++.hh

void multiply_column(A, B, C, i, alpha, beta) CW — qAB® 4 pC@
A BandedMatrix
B,C Matrix
i int
alpha double default = 1.0
beta double default = 0.0

C® refers to the ith column of matrix C. Performs Blas_Mat_Vec_Mult for

banded matrices with z = B® and y = C®,

void Blas_Mat_Mat Mult(A, B, C, alpha, beta) C «— aAB + pC
A BandedMatrix
B,C Matrix
alpha double default = 1.0
beta double default = 0.0
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Function Classes

C.1 Elementary Function Classes

All of the following classes implement operator () (double) for evaluation. One or
more parameters is given at construction. Only Polynomial supports the changing

or parameter values after construction.

Constant

Represents the constant function ¢, where ¢ is specified at construction.

Polynomial
Represents the arbitrary polynomial a,z™ + ap_12™" ! + -+- + a;x + ag. There
are two constructors for this class.
Polynomial (int) Sets the degree to the argument. Defaults to zero.
Polynomial (int, doublex) Sets the degree and takes coefficient values from

the double pointer.

The degree can be changed with the function set_degree(int) and retrieved
by get_degree(void). The coefficients a; are accessed through name [i] where

i is an integer index in the range 0 through the degree.
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Harmonic

Represents Asin(27 x f + ¢). The constructor is Harmonic (double, double,

double) where the three arguments are A, f and ¢.

Indicator

Represents the indicator function I, ,,(z) which is 1 for z; < z < 2z, and
zero otherwise. The constructor is Indicator (double, double) where the

arguments are r; and x,.

Windowed

This is a template applied to other classes to window their output to a specific
interval. Its specification is Windowed<F> where F is the type of the class it
is applied to. Its two constructors are Windowed(f, double, double) and
Windowed(f,ind). In each, f is the object of function class F. The pair of
double values are the lower and upper limits of the window, or the argument

ind is an indicator object representing the window.
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Other Library Routines

D.1 Quadrature of Differential Equations

D.1.1 Class rkMethodIP

The rkMethodIP class represents the application of the classical 4th Order Runga-
Kutta method (see [PTVF, p705]) to a particular differential equation. It also keeps
track of the current state of the system, including the state vector and the current
time. These quantities can be manipulated though the appropriate operator member

functions describe below.

Implementation:
Include: rkMethodIP.hh

Declare as: rkMethodIP<F> where F is a differential equation class type.

Constructors:

rkMethodIP(F &func)

Construct a rkMethodIP object to integrate function F.

rkMethodIP(F &func, Vector &v)

163



Appendix D. Other Library Routines 164

Construct a rkMethodIP object to integrate function F beginning from the

state in vector v.

Operators:

void set_time(double value)

void set_state(Vector value)
Manipulate the time and state of the system represented by the rkMethodIP
class.
void set_step_size(double value)
Set the step size used in the Runga-Kutta algorithm.
void step()
void step(int number)

void integrate to(double final time)

void advance(double amount)

Perform various integrations of the system: A single step, a specified number

of steps, to a particular time, or forward a particular amount.

Information:

int get_size(void)

Returns the size of the system of differential equations.
double get_time(void)
Vector& get_state(void)

Returns the current time and state of the system. Notice that get_state
returns a reference, so this can be used for assignment of values in the state also.
double get_step_size(void)

Returns the step size used in the Runga-Kutta implementation.



Appendix D. Other Library Routines 165

D.1.2 Classes IsodaMethod and SystemlIntegrator

SystemIntegrator is a generic class which represents the combination of a differential
equation class with a method for integrating it. At this time, 1sodaMethod is the
only integrator class designed to work with SystemIntegrator so we document these
classes together. Since lsodaMethod is an abstract base class, no instances of this
class are created. Its purpose is to provide functions which implement the method to

SystemIntegrator

Implementation:
Include: 1sodaMethod.hh and SystemIntegrator.hh
Link: 1sodaMethod.o
Declare as: SystemIntegrator<F,lsodaMethod> where F is a differential equa-

tion class.

Constructors:

SystemIntegrator(int n, F& function)

Construct a SystemIntegrator object with a state of size n for integrating
the given function. (Note that n must match the size of the system operated on by

function.)

Operators:

void set_time (double value)

void set_state(Vector value)

Set the time and state of the system being integrated.
void advance(double amount)
void integrate to(double time_stop)

Advance the state of the system by the specified amount, or to the specified

time.
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Information:

int get_size(void)

Return the size of the system being integrated.

double get_time(void)
Vector& get_state(void)
Return the time and state of the system being integrated. Note that get_state

returns a reference, so this function can be used for setting the state also.

D.2 Class Optimizer

Implementation:
Include: Optimizer.hh

Link: Optimizer.o, OPTmine.o

Constructors:

Optimizer(int n, ObjectiveType func)

Create an object representing the optimizer applied to the function func.
The first argument, n, is the number of arguments of the objective function and
ObjectiveType is shorthand name (created with the command typedef) for the
actual type void (*) (int*, doublex, doublex) This type is a pointer to a function
with no return argument and which accepts three arguments, a pointer to integer, and
two pointers to double. This is the type of the objective function and is suitable for
use with Fortran subroutines. The objective function’s first argument is the number
of parameters, the second contains the values of the parameters and the third is a

return argument which contains the result.

Operators:

void set_min(Vector)
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void set_max(Vector)
void set_diag(Vector)
void set_init(Vector)
void set_method(int)

void optimize(void)

These functions set the minimum and maximum allowed values, the diagonal
scaling and the initial values for each parameter. The final function is called to begin

the optimization once these parameters have been set.

Information:

int get_size(void)

int get_error(void)
double get min(void)
Vector get_result(void)
Vector get_gradient(void)

Function get_size returns the size of the system being optimized (n). The others
are for use after the optimization is completed. They return the status code reported
by the core routine, the resulting objective value, the arguments where this value is

obtained and the estimated gradient at that point.
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Finite-Element Classes

E.1 Grid Classes

Grid classes represent the division of a one dimensional interval into subintervals.
There are currently two grid classes, grid and uniformGrid. The class grid is more
general, while uniformGrid only represents grids where the subintervals all have
the same size. This allows class uniformGrid to implement some functions more

efficiently. Aside from the constructors, the interfaces of the classes are identical.

Implementation:

Include: grid.hh or uniformGrid.hh

Link: grid.o or uniformGrid.o

Constructors:

grid(doublex v, int n)

Forms a grid using the values from the memory locations pointed to by v.
There are n nodes in all, with the lowest and highest grid points being v[0] and
v[n-1].

uniformGrid(int n, double low, double high)
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Forms a uniform grid of points between the values low and high. There are

n — 2 interior nodes and the distance between them is % where h,l are given in

arguments high and low.

Information:

int size(void)

int intervals(void)

Return the number of nodes n and number of sub-intervals n — 1.

Operators:

double operator() (int i)

Return the coordinate of node number i, where ¢ = 0 is the left end and
1 =n — 1 is the right end of the interval.
double d(int i)

Return the length of the i sub-interval or the distance between nodes i + 1
and 1.
int locate(double x)

Return the number of the interval containing point z. Returns -1 if z is not

in the interval of the grid.

E.2 Class ShapeFunctionsCO0

Implementation:
Include: ShapeFunctionsCO.hh
Link: ShapeFunctionsCO0.o

Constructors:
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ShapeFunctionsCO: : ShapeFunctionsCO(int)

Construct a ShapeFunctionsCO object representing the shape functions of

degree d = 1,2, 3.

Operators:

double gridpoint(int n)
Returns the location of gridpoint n in the reference interval [—1,1].
double shape(double x, int n)

double operator() (double arg, int n)

th

Evaluate the n"" shape function at x: ,(z).

double deriv(double x, int n)

Evaluates the derivative of the nth

shape function at x: s/, ().
double M(int i, int j)
double K(int i, int j)
double W(int i, int j)

Evaluate the product of basis functions over interval n. M is the interval of

si8j, Wis s;s; and K is s}s/.
const double* Mmatrix(void)
const double* Kmatrix(void)

const doublex Wmatrix(void)

Access the matrices M, K and W through pointers to their first elements.

E.3 Class BasisFunctionsCO

Implementation:

Include: BasisFunctionsC0.hh
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Constructors:

BasisFunctionsCO(int degree, int domains, bool left, bool right)

Construct an object representing the basis functions of degree d on n domains.
True values for the boolean arguments cause the basis functions to be zero on the

corresponding boundary of the domain.

Information:
int system size(void)

int domain num(void)

Operators:
int FirstFunction(int n)

int LastFunction(int n)

Return the first and last functions whose supports include the interval n.
int FirstDomain(int n)

int LastDomain(int n)

Return the first and last domains which make up the support of function n.
double operator() (double x, int i, int j)

double deriv(double x, int i, int j)

Evaluate si(z) and si(z), where sy is the shape function which makes up the

part of basis function ¢ on interval j.
double M(int i, int j, int n)
double K(int i, int j, int n)

double W(int i, int j, int n)
Evaluate the product of basis functions over interval n. M is the interval of

Pipj, W is ¢i¢; and K is ¢;¢;. The result is not scaled to any particular geometry.
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const doublex Mmatrix(void)
const doublex Kmatrix(void)

const double* Wmatrix(void)

Access the matrices M, K and W through pointers to their first elements.

E.4 Class GalerkinCO0

Implementation:
Include: GalerkinCO.hh

Declare as: GalerkinCO<GridType> where GridType is the type of a grid class.

Constructors:

GalerkinCO<GridType>(G g, int d, bool left, bool right)

Construct an object representing Galerkin finite elements of degree d on the
grid represented by the grid objectg. Boolean arguments left and right are true to

indicate basis functions which are zero on the corresponding boundary.

Information:

int intervals(void)
int system_size(void)

int get_degree(void)

Operators:

int FirstFunction(int n)

int LastFunction(int n)

Return the first and last basis functions whose supports include interval n.

double M(int i, int j, int n)



Appendix E. Finite-Element Classes 173

double W(int i, int j, int n)
double K(int i, int j, int n)
Return the appropriate integral of basis functions on the interval n. M is the
interval of ¢;¢;, Wis ¢;¢; and K is ¢;¢’
double operator() (double x, int n)
double deriv(double x, int n)
Evaluate ¢, (z) and ¢/, (x).
double left(int n)
double right(int n)

Left and right boundaries of the support of basis function ¢,.

bool left_zero(void)

bool right_zero(void)

Return true if basis elements are constrained to be zero on that boundary.

E.5 Function Classes for use with GalerkinCO0

The template argument E refers to the GalerkinCO<GridType> type. Template argu-
ment I refers to an index class. It must support double operator() (int i). Tem-

plate argument F is a function class and must support double operator () (double).

void ConstMass<E>(E&, BandedMatrix&)
void ConstFlex<E>(E&, BandedMatrix&)
void ConstStiffness<E>(E&, BandedMatrix&)
Create a mass, flex, or stiffness matrix where the contributions from each
interval in the domain are weighted at unity. Return the result in the BandedMatrix

argument.

void AssembleMass<E,I>(E&, I&, BandedMatrix&)
void AssembleFlex<E,I>(E&, I&, BandedMatrix&)
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void AssembleStiffness<E,I>(E&, I&, BandedMatrix&)

Create a mass, flex, or stiffness matrix where the contributions from each
interval in the domain are weighted according to the values in the Index class I. I is

typically a Vector.

void InnerProduct<E,F>(E&, F&, Vector&)

Compute each element in (¢;, f), where the ¢;(-) are represented by the element
class and f(+) is represented by the class F. Return the result in the Vector argument.
MatrixProduct<E,F>(E&, F&, Vector&)

This is a class constructed with arguments for E and F. Member function
double prod(int i, int j) returns (f¢;,¢;) where the ¢;(-) are represented by

the element class and f is represented by the F argument.
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Application Classes

F.1 Parameter Classes

Parameter classes are used in conjunction with the model classes DebyeModel and
LorentzModel. They convert the parameter which appear in the polarization equa-
tions into the parameters which appear in the numerical implementations. Both of
these classes are derived from class Vector and so can be used in place of vector
arguments. This is most useful with the model classes which take vector arguments

for specifying the parameters.

F.1.1 DebyeParams
Implementation:
Include: DebyeParams.hh

Constructors:

DebyeParams(double sigma, double eps_s, double eps_inf, double tau)

Construct a DebyeParams object from the parameter values o, ¢, €5, and T.
An optional boolean fifth argument can be passed which, if true, indicates that the

fourth argument is actually A = 1/er and not 7.
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Operators

double& sigma(void)
double& eps_d(void)
double& eps_inf(void)

double& psi(void)

Access, through a reference, each of the parameter values used in the numerical

implementations. Note that in the code, psi is used for A.

F.1.2 LorentzParams

Implementation:

Include: DebyeParams.hh

Constructors:

LorentzParams (double sigma, double eps_s, double eps_inf, double tau)

Construct a DebyeParams object from the parameter values o, €, €5, wy and
7. An optional boolean sixth argument can be passed which, if true, indicates that

the fifth argument is actually A = 1/2¢7 and not 7.

Operators

double& sigma(void)

double& eps_inf(void)
double& omega 0(void)
double& omega p(void)

double& psi(void)

Access, through a reference, each of the parameter values used in the numerical

implementations. Note that in the code, psi is used for \.
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F.2 Model Classes

F.2.1 DebyeModel

Implementation:

Include: DebyeModel.hh

Constructors:

DebyeModel (const Vector& params)

Constructs a Debye model class using parameter values from the argument.
The order of the parameters in the argument should be (0,¢€4, €x, A), Where ¢; =

€s — €0 and A = 1/cT.

Information:

int get_size(void)

Operators:

void assign(const Vector& params)

Causes the model object to adopt the parameters in the argument.

double operator() (double s)

Evaluates the hysteresis kernel function at s.

double g(void)
double sigma(void)
double eps_inf(void)
double eps_d(void)
double psi(void)
Return the values of the various parameters in the Debye model. Note that in

the code, psi is used for the parameter .
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F.2.2 LorentzModel

Implementation:

Include: LorentzModel.hh

Constructors:

LorentzModel (const Vector& params)

Constructs a Lorentz model class using parameter values from the argument

vector. The order of the parameters in the vector should be (0, €, wWo, Wy, A).

Information:

int get_size(void)

Operators:

void assign(const Vector& params)

Causes the model object to adopt the parameters in the argument.

double operator() (double s)

Evaluates the hysteresis kernel function at s.
double g(void)

double sigma(void)
double eps_inf(void)
double psi(void)
double omega p(void)

double nu(void)

Return the values of the various parameters in the Lorentz model. Note that

in the code, psi is used for \.
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F.2.3 ElementModel

Class ElementModel is templated on the type of basis function elements it uses to
represent the kernel function. Currently, this is always GalerkinCO<uniformGrid>
for compatibility with other classes. An object of this class contains the values of the

coefficients in the function approximation, plus the values of o, €., and g(0).

Implementation:
Include: ElementModel.hh
Declare as: ElementModel<BasisType> where BasisType is the type of basis

elements.

Constructors:

ElementModel (BasisType& elements, double eps_inf, double g,
double sigma)

Construct with a basis elements object and values for €., go and o.
ElementModel (BasisType& elements)

Construct with a basis elements object only.

Information:

int get_size(void)
Return the total number of parameters in the model. This is equal to the

number of coefficients in the basis elements approximation, plus three.

Operators:

assign(const Vector & val)

Assign the elements in the vector argument to the coefficients and other pa-

rameters in the ElementModel object.



Appendix F. Application Classes 180

void assign coeff(const Vector& val)
Assign just the coefficients of the basis elements.
void set_eps_inf(double arg)

void set_g(double arg)
void set_sigma(double arg)

Assign values to the other parameters.

double operator() (double s)

Evaluates the hysteresis kernel function at s.
Vector& get_coeffs(void)
double eps_inf(void)

double g(void)
double sigma(void)

Returns the values of the various parameters. Notice that get_coeffs returns

a reference. This means that this function can also be used to assign to the coefficients.

F.3 Discretization Classes

F.3.1 DebyeDisc

Implementation:

Include: DebyeDisc.hh

Constructors:

DebyeDisc(Vector& params, BasisType& basis, int left, int right)

Construct the discretization object given a vector of parameters, a basis ele-
ments object of type GalerkinCO<uniformGrid>, and the value of the left and right-

most basis functions which are non-zero inside the material domain.
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Operators:

assign(Vector& params)

Adopt the parameter values in the argument.

Information:

double get_psi(void)
double get_eps(void)
double get_sigma(void)

Return the values of the physical parameters.
int L(void)
int R(void)

Return the numbers of the left and rightmost basis elements in the material

sub-domain.
int get_size(void)
Return the size of the elements e and ¢ in the system

int get_sub_size(void)

Return the number of elements in the sub-domain. Equal to result of R()-

LO+1.

int get_total_size(void)

Return the total size of the differential system. Equal to 2xget_size()+

get_sub_size().

int intervals(void)

Return the number of intervals in the basis elements.
int get_num params(void)

Vector& get_params(void)
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Return and access the number of parameters. For objects of this class, the

number of parameters is always four.

Class DebyeDisc also contains publicly accessible data members which store the

coefficients used by the DebyeOperator class.

F.3.2 LorentzDisc

Implementation:

Include: LorentzDisc.hh

Constructors:

LorentzDisc(Vector& lorentz, GalerkinCO<uniformGrid>& elements,

int left, int right)

Construct the discretization object given a vector of parameters, a basis ele-
ments object of type GalerkinCO<uniformGrid>, and the value of the left and right-

most basis functions which are non-zero inside the material domain.

Operators:

assign(Vector& params)

Adopt the parameter values in the argument.

Information:

double get_psi(void)
double get_sigma(void)
double get_omega 0(void)
double get_omega p(void)

Return the values of the physical parameters.

int L(void)
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int R(void)
Return the numbers of the left and rightmost basis elements in the material
sub-domain.
int get_size(void)
Return the size of the elements e and € in the system
int get_sub_size(void)

Return the number of elements in the sub-domain. Equal to RO)-LO+1.

int get_total_size(void)

Return the total size of the differential system. Equal to 2xget_size()+

get_sub_size().
int intervals(void)

Return the number of intervals in the basis elements.
int get_num params(void)

Vector& get_params(void)

Return and access the number of parameters. For objects of this class, the

number of parameters is always five.

Class LorentzDisc also contains publicly accessible data members which store

the coefficients used by the LorentzOperator class.

F.3.3 GeneralDisc

Implementation:
Include: GeneralDisc.hh
Declare as: GeneralDisc<Model> where Model is one of DebyeModel,

LorentzModel or ElementModel.

Constructors:



Appendix F. Application Classes 184

GeneralDisc(Model& model, GalerkinCO<uniformGrid>& space_elements, int

left, int right, GalerkinCO<uniformGrid>& time_elements)

Construct the discretization object given a model object of the templated type,
a basis elements object of type GalerkinCO<uniformGrid>, and the value of the left
and right-most basis functions which are non-zero inside the material domain, plus
another GalerkinCO<uniformGrid> object describing the discretization of the space

variable.

Operators:

assign(Vector& params)

Adopt the parameter values in the argument.

assign(Model& model)

Adopt the parameters of the physical model given by the model class.

Information:

int L(void)
int R(void)

Return the numbers of the left and rightmost basis elements in the material
sub-domain.
int get_size(void)

Return the size of the elements e and é in the system
int get_sub_size(void)

Return the number of elements in the sub-domain. Equal to result of R()-
LO+1.
int get_time size(void)

Return the number of elements in the history approximation.
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int get_total_size(void)

Return the total size of the differential system. Equal to 2xget_size()+

get_sub_size() Xget_time_size().

int intervals(void)

Return the number of intervals in the basis elements.
int get_num params(void)

Vector& get_params(void)

Return and access the number of parameters. For objects of this class, the

number of parameters is always five.

F.4 Operator Classes

F.4.1 DebyeOperator
Implementation:
Include: DebyeOperator.hh

Constructors:

DebyeOperator (const Windowed<Harmonic> &signal, DebyeDisc& disc)

Construct a DebyeOperator object with an object representing the interro-

gating signal and a DebyeDisc object.

Operators:

void operator() (double time, Vector &state, Vector &deriv)

Evaluate the derivative of the system at time time and state state. Return

the result in the vector deriv.
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F.4.2 LorentzOperator

Implementation:

Include: LorentzOperator.hh

Constructors:

LorentzOperator (const Windowed<Harmonic> &signal, LorentzDisc& disc)

Construct a LorentzOperator object with an object representing the interro-

gating signal and a LorentzDisc object.

Operators:

void operator() (double time, Vector &state, Vector &deriv)

Evaluate the derivative of the system at time time and state state. Return

the result in the vector deriv.

F.4.3 GeneralOperator

Implementation:

Include: GeneralOperator.hh

Constructors:

GeneralOperator(const Windowed<Harmonic> &signal, LorentzDisc& disc)

Construct a GeneralOperator object with an object representing the interro-
gating signal and a LorentzDisc object. The type sigType is a short name for class

Windowed<Harmonic>.

Operators:

void operator() (double time, Vector &state, Vector &deriv)

Evaluate the derivative of the system at time time and state state. Return

the result in the vector deriv.
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F.5 Forward Classes

F.5.1 ForwardOperator

Implementation:
Include: ForwardOperator.hh
Declare as: ForwardOperator<System> where System is a class type which sup-

ports the interface for an integrable system.

Constructors:

ForwardOperator(System& sys, double time, int number)

Construct a ForwardOperator object to integrate the provided system sys.

The data is collected at number points at uniform intervals between zero and time.

Information:

int get_size(void)

Get the size of the system being integrated.

Vector& get_state(void)
Access the current state of the system being integrated.
Operators:

void evaluate(Vector& result)

Integrate the system of equations from zero to the time specified at construc-

tion. Return the value of the first coefficient of e at each step in the vector argument.

F.5.2 ForwardGeneral

Implementation:

Include: ForwardGeneral.hh
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Declare as: ForwardGeneral<ModelType> where ModelType is DebyeModel,
LorentzModel or ElementModel.

Constructors:

ForwardGeneral (DiscType& disc, const Windowed<Harmonic>& signal,

double time, int number)

Construct a ForwardGeneral object from a discretization and interrogation
signal. The data is collected at number points at uniform intervals between zero and
time. Type DiscType is GeneralDisc<ModelType> and sigType is

Windowed<Harmonic>.

Information:
int get_size(void)
Return the size of the system being integrated.

int get num params(void)

Return the number of parameters of the model.

Operators:

void set_time_step(double arg)
Set the time step for integration of the system.
void adopt(const ModelType& aModel)
void adopt(const Vector& params)
Adopt a new model, expressed either as a model class or vector of parameters.

void evaluate(Vector& arg)

Integrate the system of equations from zero to the time specified at construc-

tion. Return the value of the first coefficient of e at each step in the vector argument.
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F.6 Inverse Classes

F.6.1 InverseOperator

Implementation:
Include: InverseOperator.hh
Declare as: InverseOperator<ForwardOp,Disc> where ForwardOp the type ex-
act type of a forward operator class described above and Disc is the type of the

discretization class.

Constructors:

InverseOperator (ForwardOp&, Disc&, const intx)

Construct an InverseOperator object with the given forward operator object
and discretization object. Note that the discretization object must be associated with
the forward problem object. The third argument is a pointer to an array of integers
containing ones and zeros, which indicates which parameters to optimize. A one in

the ith position of this array indicates that the ith parameter is to be optimized.

Information:

Vector get_result(void)

Return the parameters resulting from the optimization.

double get min(void)

Returns the minimum residual obtained by the optimization.

double get_result_code(void)

Return the status code returned by the optimizer.

Operators:

void set_data(Vector arg)
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Set the data which the inverse problem attempts to match by optimizing pa-

rameter values.

void evaluate_data(Vector& params)

Evaluate the forward problem at with the given parameter values. Store the

result as the data to be reconstructed in the inverse problem.

set_initial(const Vector& arg)
void setmin (const Vector& arg)
void set_max (const Vector& arg)
void set_diag (const Vector& arg)
void set_sizes (const Vector& arg)
void set_fixed (const Vector& arg)
void set_scale (const Vector& arg)

void set_method(int i)

Set the values of other parameters which influence the optimization. Note that
all of the vector arguments refer to the full set of parameters. If the optimization is
performed over a subset of the parameters, the correct values from these arguments

are selected and passed to the optimizer.

void set_active(const int* arg)

Reset the list of active parameters. The argument is a pointer to integers
containing ones and zeros. A one in the ith place of this array indicates that the ith
parameter is to be optimized.
double evaluate_opt(Vector& params)

Evaluate the objective function at the indicated parameters. Note that this
is a reduced set of parameters which contains only values for the parameters being
optimized over.
void optimize(void)

Begin the optimization.
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F.6.2 InverseGeneral

Implementation:
Include: InverseGeneral.hh

Declare as: InverseGeneral<Model> where Model is one of the three model

types.

Constructors:

InverseGeneral (const ForwardType&, const intx)

Construct an InverseGeneral object from a forward problem. The type
ForwardType is ForwardGeneral<ModelType>. The third argument is a pointer to
an array of integers containing ones and zeros, indicating which parameters to opti-
mize. A one in the ith position of this array indicates that the ith parameter is to be

optimized.

Information:

Vector get_result(void)
Return the parameters resulting from the optimization.
double get min(void)

Returns the minimum residual obtained by the optimization.

double get_result_code(void)

Return the status code returned by the optimizer.

Operators:

void set_data(Vector arg)

Set the data which the inverse problem attempts to match by optimizing pa-

rameter values.
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void evaluate_data(Vector& params)

Evaluate the forward problem using the given parameter values. Store the

result as the data to be reconstructed in the inverse problem.

set_initial (const Vector& arg)
void setmin (const Vector& arg)
void set_max (const Vector& arg)
void set_diag (const Vector& arg)
void set_fixed (const Vector& arg)

void set_method (int i)

Set the values of other parameters which influence the optimization. Note that
all of the vector arguments refer to the full set of parameters. If the optimization is
performed over a subset of the parameters, the correct values from these arguments

are selected and passed to the optimizer.

void set_active(const int* arg)

Reset the list of active parameters. The argument is a pointer to integers
containing ones and zeros. A one in the ith place of this array indicates that the ith
parameter is to be optimized.
double evaluate_opt(Vector& params)

Evaluate the objective function at the indicated parameters. Note that this
is a reduced set of parameters which contains only values for the parameters being
optimized over.
void optimize(void)

Begin the optimization.
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Example Programs

G.1 Step through a simulation of the differential
Debye model

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include "DebyeParams.hh"
#include "DebyeStateHolder.hh"
#include "DebyeOperator.hh"
#include "uniformGrid.hh"
#include "GalerkinCO.hh"
#include "Vector.hh"
#include "BandedMatrix.hh"
#include "Harmonic.hh"
#include "Windowed.hh"
#include "rkMethodIP.hh"
#include "blasl++.hh"
#include "const.hh"
#include "Options.hh"
#include "Numerics.hh"
#include "Physics.hh"

/o okokokoksksk sk skk ok ok ok kR sksk sk sk ok ok ok sk sk sk sk sksk sk ok ok ok sk sk sk sksksksk ok sk okok ok sk sksk sk sk sk sk ok ok
stepDiffDebye
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Step through a simulation of the differential debye model.

KKK KKK oK KKK KKK KKK KKK K oK K oK KoK K oK K oK KoK KoK KoK KoK KoK KoK KoK KoK KKK oK Kok Kok
void main(int argc, charx*x argv){
Options options(argc, argv);

Numerics numerics(options.numerics_name);
Physics physics (options.physics_name);

int space_degree = numerics.space_degree;

int space_nodes = numerics.N_elements;

bool left_zero = false;

bool right_zero = true;

[~ mmm
// Create Galerkin object

[~ mmm

uniformGrid space(space_nodes, 0, physics.length);
typedef GalerkinCO<uniformGrid> spaceDisc;
spaceDisc galerk(space, space_degree, left_zero, right_zero);

int left = numerics.left_element;
int right = numerics.right_element - 1;
cout << "Left Domain: " << left << endl
<< "Right Domain: " << right << endl;
cout << "Left edge of material: " << space(left) << endl;
cout << "Right edge of material: " << space(right+1) << endl;

int sys_size
int domains

galerk.system_size();
galerk.intervals();

cout << "Number of basis functions: " << sys_size << endl;
cout << "Number of domains: " << domains << endl;
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B
// Construct debye parameters from
// the loaded parameter values

[/ mmmm

DebyeParams params;
params.assign(physics.sigma, physics.params[0],
physics.epsilon_r, physics.params[1]);

cout << "Debye parameters: " << endl;
cout << params.sigma() << endl;
cout << params.eps_inf() << endl;
cout << params.eps_d() << endl;

cout << params.psi() << endl;

[/ —mmmmmmmmm e
// Construct a Debye Discretization
[/ —mmmmmmmmm e

DebyeDisc debye_disc(params, galerk, left, right);

DebyeStateHolder state(debye_disc.get_size(),
debye_disc.L(), debye_disc.R());
state = 0.0;

typedef Windowed<Harmonic> sigType;

double s_final = physics.signal_stop;

double freq physics.omega;

Harmonic carrier_signal (freq*2*PI*ETA, freq, PI/2);
sigType input_signal(carrier_signal, 0.0, s_final);

cout << "Creating a Debye Operator: " << endl;
DebyeOperator debye_op(input_signal, debye_disc);

cout << "Constructing rkMethodIP. " << endl;
rkMethodIP<DebyeOperator> problem(debye_op, state);

problem.set_step_size(numerics.time_step);

cout << "Using time step: " << numerics.time_step << endl;
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/] =mmmmm
// Iterate through the simulation
B
cout << "Saving state in file: " << options.data_name << endl;
double advance = 0.5;

while (advance>0){

cout
cout
cin

<< "Current time: " << problem.get_time() << endl;

<< "Advance by: ";
>> advance;

problem.advance (advance) ;

ofstream out_plot(options.data_name.c_str());
state.view(problem.get_state());
out_plot << state.e << endl;
out_plot.close();

G.2 Step Through a Simulation

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

Debye Model

<iostream.h>
<fstream.h>
"Matrix++.hh"
"Galerkin.hh"
"Windowed.hh"
"Harmonic.hh"
"DebyeParams.hh"
"DebyeModel .hh"
"GeneralDisc.hh"
"uniformGrid.hh"
"ForwardGeneral.hh"
"const.hh"

of the Hystersis
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#include "Options.hh"
#include "Numerics.hh"
#include "Physics.hh"

/***********************************************************

stepHystDebye

Step through a simulation of the debye hysteresis model.

KKK KKK KK KK KKK KKK KKK KoK K oK KoK K KK KK oK K o KoK Ko K oK K KK KoK KoK KKK K KoK K
void main(int argc, char x*argv){
Options options(argc, argv);

Numerics numerics(options.numerics_name);
Physics physics (options.physics_name);

i

// Create Galerkin objects
A

double r = numerics.history_duration; // Duration of history.
int space_degree = numerics.space_degree,

time_degree
space_nodes = numerics.N_elements,
time_nodes;

int time_intervals = numerics.M_elements;

bool left_zero = false;

bool right_zero = true;

numerics.time_degree,

time_nodes = time_intervals + 1;
cout << "History grid size: " << r/time_intervals << endl;

uniformGrid space(space_nodes, O, physics.length);
typedef GalerkinCO<uniformGrid> spaceDisc;
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spaceDisc galerk_space(space, space_degree, left_zero, right_zero);

uniformGrid history(time_nodes, -r, 0);
typedef GalerkinCO<uniformGrid> timeDisc;
timeDisc galerk_hist(history, time_degree, false, false);

int left = numerics.left_element;
int right = numerics.right_element - 1;
cout << "Left Domain: " << left << endl

<< "Right Domain: " << right << endl;
cout << "Left edge of material: " << space(left) << endl;
cout << "Right edge of material: " << space(right+1) << endl;
[/ m e

// Construct debye parameters from
// the loaded parameter values

[/ —mm

DebyeParams params;
params.assign(physics.sigma, physics.params[0],
physics.epsilon_r, physics.params[1]);

[/ ==mmmmmmmmmmemmeee

// Create a DebyeModel

[/ ==mmmmmmmmmmemmeen

cout << "Constructing a Debye Model..." << endl;

DebyeModel model (params) ;
[/ ——mmmm e
// Create a Discretization with the Model

[/ m

typedef GeneralDisc<DebyeModel> DiscType;
DiscType debye_disc(model, galerk_space, left, right, galerk_hist);

// Create a stateholder from the discretization.

GeneralStateHolder state(debye_disc.get_space_size(),
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debye_disc.L(), debye_disc.RQO),
debye_disc.get_time_size());

state = 0.0;

/] —m—mmmm e
// Construct a Signal
/] —mmmmmmmm e

typedef Windowed<Harmonic> sigType;

double s_final = physics.signal_stop;

double freq = physics.omega;

Harmonic carrier_signal (freq*2*PI*ETA, freq, PI/2);
sigType input_signal(carrier_signal, 0.0, s_final);

[/ mmmmmmm
// Construct a General Operator
[/ mmmmmmm
cout << "Creating a General Operator... " << endl;

typedef GeneralOperator<DiscType> OpType;
OpType debye_op(input_signal, debye_disc);

cout << "Constructing rkMethodIP... " << endl;
rkMethodIP<0pType> problem(debye_op, state);
problem.set_step_size(numerics.time_step);

cout << "Using time step: " << numerics.time_step << endl;
[/ =mmmmmmmmm -
// Iterate through the simulation
[/ =mmmmmmmmm e

// Temporairly modified for timing.
cout << "Saving state in file: " << options.data_name << endl;

double advance = 0.5;
while (advance>0){

cout << "Current time: " << problem.get_time() << endl;
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cout << "Advance by: ";
cin >> advance;
problem. advance (advance) ;

ofstream out_plot(options.data_name.c_str());
state.view(problem.get_state());

out_plot << state.e << endl;
out_plot.close();



